Dr. Sergey Korchak, Dr. Stefan Glöggler, and Dr. Anil Jagtap (from left) with their home-made portable MRI unit. Frederik Köpper. Max Planck Institute for Biophysical Chemistry

Magnetic resonance imaging (MRI) is indispensable in medical diagnostics. However, MRI units are large and expensive to acquire and operate. With smaller and cost-efficient systems, MRI would be more flexible and more people could benefit from the technique. Such mini MRI units generate a much weaker signal that is difficult to analyze, though. Researchers at the Max Planck Institute (MPI) for Biophysical Chemistry and the Center for Biostructural Imaging of Neurodegeneration have now developed a method amplifying the signal so much that they could monitor a metabolic reaction in real time with a miniature MRI. This is an important contribution to making flexible small MRI devices usable.

Midbrain organoids from smNPCs in the microscope: Left: outer region of an organoid, middle: whole organoid, right: center of the organoid. Henrik Renner, Jan Bruder | Max Planck Institute for Molecular Biomedicine

Max Planck Innovation licenses process for the generation of organ-like tissue aggregates to biotech company StemoniX
***Sometimes hundreds of thousands of potential therapeutics need to be tested in large-scale, fully automated experiments to identify a single effective drug. Most compounds do not work as desired, and some are even toxic. Since the development of the induced Pluripotent Stem (iPS) Cell technology in 2006, researchers have been able to produce stem cells from skin biopsies and blood samples. To approach physiological conditions in the laboratory, many researchers use iPS cell technology to produce three-dimensional, organ-like tissue aggregates (organoids).

Cryo-EM visualizes individual atoms in a protein for the first time. The cartoon shows a part of the apoferritin protein (yellow) with a tyrosine side chain highlighted in grey. Atoms are individually recognizable (red grid structures). © Holger Stark / Max Planck Institute for Biophysical Chemistry

A crucial resolution barrier in cryo-electron microscopy has been broken. Holger Stark and his team at the Max Planck Institute (MPI) for Biophysical Chemistry have observed single atoms in a protein structure for the first time and taken the sharpest images ever with this method. Such unprecedented details are essential to understand how proteins perform their work in the living cell or cause diseases. The technique can in future also be used to develop active compounds for new drugs.

To fight cancer by a newly developed substance shredding carcinogenic aurora proteins: This is the aim of a new study by scientists at universities in Würzburg and Frankfurt. Dr. Sandy Pernitzsch

Researchers at the universities of Würzburg and Frankfurt have developed a new compound for treating cancer. It destroys a protein that triggers its development.
The villain in this drama has a pretty name: Aurora – Latin for dawn. In the world of biochemistry, however, Aurora (more precisely: Aurora-A kinase) stands for a protein that causes extensive damage. There, it has been known for a long time that Aurora often causes cancer. It triggers the development of leukemias and many pediatric cancers, such as neuroblastomas.