High PIP2 concentrations on the cell membrane (left) prohibit SERT oligomerisation or dissociation so the level of oligomerisation is fixed. The PIP2 concentration in the endoplasmic reticulum is very low (right). The SERT oligomerisation therefore strives for equilibrium. TU Wien

Neurotransmitter transporters are some of the most popular transport proteins in research as they play a major role in the processing of signals in the brain. A joint study by TU Wien and the Medical University of Vienna has now successfully demonstrated for the first time the structural impact of membrane lipids on medically relevant serotonin transporters

During the COMPAMED 2016 multiple collaborations were initiated in about 70 arranged business meetings between enterprises from Germany and Fukushima.  IVAM

In 2016 the IVAM Microtechnology Network intensified its activities to improve networking between Japanese and German medical technology companies. Within a collaboration project the cooperation between companies from North Rhine-Westphalia (NRW) and the Japanese Fukushima Prefecture was brought forward.

The molecule Wnt5a prevents the repair of structures in the lung of COPD patients. Shown here are the alveolar epithelium (green) and immune cells (red). Source: Helmholtz Zentrum München

In chronic obstructive pulmonary disease (COPD), the patients’ lungs lose their ability to repair damages on their own. Scientists at the Helmholtz Zentrum München, partner in the German Center for Lung Research (DZL) now have a new idea as to why this might be so. In the ‘Journal of Experimental Medicine’, they blame the molecule Wnt5a for this problem. The first indication of COPD is usually a chronic cough. As the disease progresses, the airways narrow and often pulmonary emphysema develops. This indicates irreversible expansion and damage to the alveoli, or air sacks. "The body is no longer able to repair the destroyed structures," explains Dr. Dr. Melanie Königshoff, head of the Research Unit Lung Repair and Regeneration (LRR) at the Comprehensive Pneumology Center (CPC) of Helmholtz Zentrum München. She and her team have made it their job to understand how this happens.

Two polymersomes assemble by DNA hybridization: the single DNA strands on the surface of the compartments interconnect, creating an extremely stable DNA bridge. University of Basel

Scientists from the University of Basel have succeeded in organizing spherical compartments into clusters mimicking the way natural organelles would create complex structures. They managed to connect the synthetic compartments by creating bridges made of DNA between them. This represents an important step towards the realization of so-called molecular factories. The journal Nano Letters has published their results.