The illustrations show in comparison how the blood circulation in the human body (left) and the channels on the multi-organ chip (right) supply the liver, the kidneys and other organs or tissues. © Fraunhofer IWS Dresden

Dresden Fraunhofer engineers have developed a so-called "multi-organ chip". This microsystem from the Fraunhofer Institute for Material and Beam Technology IWS Dresden, which has now received an "EARTO Innovation Award" in Brussels, simulates the blood circulation and the organs of animals or humans. The "lab-on-a-chip" will help industry to develop new drugs and cosmetics more quickly than before. But what is even more important: "We see good opportunities to eliminate the need for many animal experiments," emphasized Dr. Udo Klotzbach, Business Unit Manager Microtechnology at Fraunhofer IWS. In addition, this system opens the door to individualized medicine a little further, in which doctors can determine an exactly fitting therapy for each patient within days instead of years.

A metal-organic framework could serve as a replacement for the semiconductor silicon in the future. © MPI-P

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

The novel topological insulator built in the Würzburg Institute of Physics: a controllable flow of hybrid optoelectronic particles (red) travels along its edges. (Picture: Karol Winkler)

For the first time, physicists have built a unique topological insulator in which optical and electronic excitations hybridize and flow together. They report their discovery in "Nature". Topological insulators are materials with very special properties. They conduct electricity or light particles on their surface or edges only but not on the inside. This unusual behaviour could eventually lead to technical innovations which is why topological insulators have been the subject of intense global research for several years.

Hardmetal sample with complex geometry on FFF standard printer Hage3D 140 L, in which larger components can be perspectively printed as well. © Fraunhofer IKTS

Extremely hard tools are required in forming technology, metal-cutting and process engineering. They are conventionally made by powder pressing. Although this achieves a high degree of hardness, it is often necessary to carry out a complex and therefore expensive post-processing. Additive manufacturing enables complex geometries, but has been limited in terms of hardness and component size so far. Researchers at the Fraunhofer IKTS in Dresden have now adapted the 3D printing process Fused Filament Fabrication for hardmetals. The development meets all requirements for the first time.

The engineers coated a glass plate with a particularly smooth and conductive polymer layer of “Poly(Kx[Ni-itto])” by rotation coating (“spin coating”). Fraunhofer IWS Dresden

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed on pipes or other surfaces in order to convert waste heat into electricity. The experts at the Fraunhofer Institute for Material and Beam Technology IWS Dresden use ink based on conductive polymers for this purpose.

The international research team is working on a treatment on dementia like Alzheimer, which leads to a death of neuronal cells. ©

About 29 million people around the world are affected by the disease "Alzheimer". In an international collaboration, scientists of the Max Planck Institute for Polymer Research (MPI-P) in Mainz together with teams from Italy, Great Britain, Belgium and the USA are now working together on an approach for a therapy. On the one hand, the goal is to understand the processes occurring in the brain that lead to the disease; on the other hand the development of a method for targeted drug delivery.

Concept of the Sens-o-Spheres with power receiver, microcontroller and signal processing, battery as well as encapsulation. (c) TU Dresden

The COMPAMED, which takes place annually co-located to the MEDICA in Dusseldorf, Germany, is an established and world-wide well-known marketplace for medical components and technologies. Every year, the COMPAMED asserts itself as the leading international marketplace for suppliers of medical manufacturing.

Especially in the field of medical devices for mobile diagnostics, therapy and laboratory equipment increasingly powerful, smart and reliable high-tech solutions are needed. This is why the demand for miniaturization of medical components continues to grow steadily.

Processing head "LMD-W-20-L" for wire-based laser deposition welding. Graphic: Fraunhofer IPT

When economic or safety considerations rule out the use of powder materials in additive manufacturing, the option of wire-feed laser deposition welding resents itself. The Fraunhofer Institute for Production Technology IPT in Aachen has developed a smart laser module for wire deposition welding, which can easily be integrated within existing process chains, handling systems or machine tools. The engineers from Aachen will be unveiling the LMD-W-20-L module for the first time to the visitors from industry at Formnext, the Fair for Additive Technologies in Frankfurt/Main, Hall 3, Booth E70, 13-16 November 2018.

Principle of a silicon singlet fission solar cell with incorporated organic crystalls. M. Künsting/HZB

The efficiency of a solar cell is one of its most important parameters. It indicates what percentage of the solar energy radiated into the cell is converted into electrical energy. The theoretical limit for silicon solar cells is 29.3 percent due to physical material properties. In the journal Materials Horizons, researchers from Helmholtz-Zentrum Berlin (HZB) and international colleagues describe how this limit can be abolished.

Schematic illustration of the visible-light-controlled reconfigurable surface functions. © MPI-P

The functionalization of surfaces with different physical or chemical properties is a key challenge for many applications. For example, the defined structuring of a surface with hydrophobic and hydrophilic areas can be used for the separation of emulsions, like water and oil. However, the creation of user-defined surface properties is a challenge. Researches from the Max Planck Institute for Polymer Research in Mainz (MPI-P), the University of Science and Technology of China in Hefei and the University of Electronic Science and Technology in Chengdu (China) have now developed surfaces that can easily be patterned with different functionalities using visible light.

Neurite outgrowth assay of neurons expressing GFP. The first and last time point (0 min, 50 min) are pseudocolored in magenta and cyan, respectively. Busskamp Lab CRTD

An interdisciplinary and international research group led by Dr. Volker Busskamp from the Center for Regenerative Therapies Dresden at the TU Dresden (CRTD) has decoded the regulatory impact on neuronal survival of a small non-coding RNA molecule, so-called miRNA, at the highest resolution to date. This deciphering of gene regulation primes applications for strengthening neurons in order to protect them from neurodegenerative diseases. The extensive systems biology methods used here could become a new standard for the way miRNAs are researched.

Markus Koch (3rd from left), Bernhard Thaler (4th fro left), head of institute Wolfgang Ernst (far right) and team in the "Femtosecond-Laser-Lab" at the Institute of Experimental Physics at TU Graz. ©Lunghammer - TU Graz

Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet. In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on processes in molecules and clusters which take place on time scales of picoseconds (10⁻¹² seconds) and femtoseconds (10⁻¹⁵ seconds). Now Koch and his team have achieved a breakthrough in the research on completely novel molecular systems.

The new cultivated tomato (right) has a variety of domestication features which distinguish it from the wild plant (left). Photo: Agustin Zsögön/Nature Biotechnology

For the first time, researchers from Brazil, the USA and Germany have created, within a single generation, a new crop from a wild plant – the progenitor of our modern tomato – by using a modern process of genome editing. Starting with a “wild tomato” they have, at the same time, introduced a variety of crop features without losing the valuable genetic properties of the wild plant. Prof. Jörg Kudla from the University of Münster is involved in the study. The results have been published in the current issue of “Nature Biotechnology” (Advance Online Publication).

The framework of DUT-60 holds a pore volume of 5.02 cm3g-1 – the highest specific pore volume one has ever measured among all crystalline framework materials so far. Dr. I. Senkovska, TU Dresden

World Record of Cavities. Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material is, the more liquids and gases it is able to store. However, a multitude of pores destabilizes the material. In search of the stability limits of such frameworks, researchers of the TU Dresden’s Faculty of Chemistry broke a world record: DUT-60 is a new crystalline framework with the world’s highest specific surface and the highest specific pore volume (5.02 cm3g-1) measured so far among all known crystalline framework materials.

Here, stripes with local field maxima are formed, so that quantum dots shine particularly strongly. Carlo Barth / HZB

Photonic nanostructures can be used for many applications, not just in solar cells, but also in optical sensors for cancer markers or other biomolecules, for example. A team at HZB using computer simulations and machine learning has now shown how the design of such nanostructures can be selectively optimised. The results are published in Communications Physics.

The distal dendrites of pyramidal neurons (red) are controlled by a specialized set of interneurons (white) in layer 1 of neocortex. Artwork by Julia Kuhl (

A unique feature that sets neurons apart from all other cells are their beautiful, highly elaborate dendritic trees. These structures have evolved to receive the vast majority of information entering a neuron, which is integrated and processed by virtue of the dendrites’ geometry and active properties. Higher brain functions such as memory and attention all critically rely on dendritic computations, which are in turn controlled by inhibitory synaptic input. A team of scientists, led by Johannes J. Letzkus (MPI for Brain Research), now has identified a novel form of inhibition that dominantly controls dendritic function and strongly depends on previous experiences.