Ali Gooneie looks at a sample from his most recent research project: electrically conductive polymers. The first calculations for his next project are sketched out on the blackboard. Empa

Can the properties of composite materials be predicted? Empa scientists have mastered this feat and thus can help achieve research objectives faster. This leads, for instance, to better recycling techniques and electrically conductive synthetic materials for the solar industry. Ali Gooneie simulates on his computer what holds the world together right at its very core: atoms, molecules, molecular chains and bundles – then lumps and fibers, which emerge thereof. With his calculations, the Empa researcher can also explain properties we can feel with our fingertips: smooth and rough surfaces, flexible and rigid materials, heat-conductive substances and insulators.

Stacked Janus nanocups, before being separated. University of Duisburg-Essen (UDE)

They look like interlocking egg cups, but a hen's egg is 100,000 times as thick as one of the miniature cups: Scientists at the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE) have made polymers to form themselves into tiny cups on their own. They could, for example, be used to remove oil residues from water. The scientists have published their results in the journal "Angewandte Chemie".

The codon-specific elongation model (COSEM) simulates protein synthesis. Scientific Reports

In a research co-operation, researchers of the Paul-Ehrlich-Institut (PEI) have developed a mathematical model which allows more accurate forecasts and improved output in the biotechnology-based protein synthesis in host organism. The new method offers many and varied applications in biotechnology including the development of vaccines. Scientific Reports has published an article on the results in its online version of 17 May 2019.

By means of laser powder build-up welding, components made of different materials can be integrally manufactured. © Fraunhofer IWS Dresden

Fraunhofer lighthouse project "futureAM" expected to speed up "additive manufacturing" by a factor ten. Scientists at the Fraunhofer Institute for Material and Beam Technology IWS in Dresden have developed innovative methods enabling more materials to be processed in additive manufacturing than ever before. For example, additive manufacturing systems could facilitate better future aircraft engines with lower fuel consumption.

Prototype of a mount with tunable stiffness. Photo: Fraunhofer LBF/Raapke

Numerical simulations have massively accelerated product development over the past few decades. A variety of scenarios can be tested in a short time and the number of necessary prototypes has been steadily reduced. Nevertheless, physical tests will not lose significance. Numerical models must be validated and approval testing must be carried out. In the project “Digitization in Testing Technology”, scientists from the Fraunhofer Institute for Structural Durability and System Reliability LBF have developed tunable test rig components and a mechanical hardware-in-the-loop approach. The Results will present at the Automotive Testing Expo in Stuttgart, May 21-23, 2019 in hall 8, booth 8052.

Electron microscopic image of the hybrid material. Image: Pawan Kumar / University of Alberta

Chemists at the Technical University of Munich (TUM) have developed an efficient water splitting catalyst as part of a collaborative international research effort. The catalyst comprises a double-helix semiconductor structure encased in carbon nitride. It is perfect for producing hydrogen economically and sustainably. An international team led by TUM chemist Tom Nilges and engineer Karthik Shankar from the University of Alberta have now found a stable yet flexible semiconductor structure that splits water much more efficiently than was previously possible. 

Using ultrashort pulses of light enables extremely economical switching of spins within a few picoseconds from one stable orientation (red arrow) to another (white arrow). Illustration: Brad Baxley (parttowhole.com) – For exclusive use in reporting this press release.

 

Using extremely short bursts of light, precisely shaped in a custom-cut gold antenna, an international research team from Germany, The Netherlands, Russia, and the US has switched the magnetization state of a solid faster and more efficiently than ever before. Their key achievement could pave the way towards a novel kind of nearly dissipation-free information technology. The results are published in the current issue of the top-tier journal Nature.

With multi-beam optics, the high laser powers can be used efficiently. © Fraunhofer ILT, Aachen, Germany.

Experts from 13 different Fraunhofer institutes are working on the development of multi-kW ultrafast lasers and various applications in the Fraunhofer Cluster of Excellence Advanced Photon Sources CAPS. A user facility with application laboratories in Aachen and Jena is being created for this purpose, laboratories in which partners from industry and research can work with the new technology.

The silver spinyfin (Diretmus argenteus) is the vertebrate with the highest number of opsin genes. Alexandra Viertler, University of Basel

The deep sea is home to fish species that can detect various wavelengths of light in near-total darkness. Unlike other vertebrates, they have several genes for the light-sensitive photopigment rhodopsin, which likely enables these fish to detect bioluminescent signals from light-emitting organs. The findings were published in the journal Science by an international team of researchers led by evolutionary biologists from the University of Basel.

Sensor patterns and conducting paths printed on polyester textile. © K. Selsam for Fraunhofer ISC

Integrating sensoric functions into textiles or elastomers is way more difficult than equipping machines because it requires movable or extensible sensors. The Center Smart Materials CeSMa of the Fraunhofer ISC with its experience in the field of adaptive elastomers has developed highly elastic sensors and actuators based on silicone. They provide a wide range of sensoric and actoric functions for smart electronic textiles (e-textiles) with a broad application potential in medical technology, in sports, in furniture, vehicles or in transport safety. CeSMa will be presenting its developments from May 14-17 at TechTextil 2019 in Frankfurt.

Device schematics. a - Schematic cross section of the device. b - Hot-electron transistor operation. Electrons are injected by applying a negative emitter-base bias, and detected in the molecular semiconductor. These electrons are out of equilibrium with the thermal electrons in the base which cannot be described by a larger temperature. The measurements can be performed either without or with externally applied collector-base bias. Frank Ortmann

Physicists from the Research Cluster Center for Advancing Electronics Dresden (cfaed) of the TU Dresden, together with researchers from Spain, Belgium and Germany, were able to show in a study how electrons behave in their injection into organic semiconductor films. Simulations and experiments clearly identified different transport regimes. The study was published now in Nature Communications.

Confocal image of the embryonic mouse cortex. Green: stem cells; red: intermediate progenitor stage; white: final neurons; blue: nuclei of all cells. IST Austria/Hippenmeyer Group

During brain development, stem cells generate neurons of different type and function at distinct points in time. IST Austria researchers contribute key experiment to identify essential protein controlling stem cell behavior. To build the neocortex, a brain area involved in higher cognitive functions, stem cells produce billions of neurons of various types. In a Science study, neuroscientists from Switzerland, Belgium, and the Institute of Science and Technology Austria (IST Austria) have now shown that, over time, the neocortical stem cells go through various maturation states, each of them leading to a distinct neuron type. Production of the correct neuron type is bound to a specific protein complex.

Schematic illustration of a light-based, brain-inspired chip. The chip contains an artificial network of neurons and synapses that works with light. Johannes Feldmann

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

Reduced reworking and creation of selective polishing effects through the sequential process of USP laser cleaning and USP polishing after structure generation. © Fraunhofer ILT, Aachen, Germany / Volker Lannert.

Car makers currently use a variety of methods to emboss plastic panels for vehicle interiors. However, manufacturing the tools required for this purpose is an extremely time-consuming process. This situation can be improved using a new laser machine that triples the rate at which these tools are produced while facilitating even more complex structures. The expertise required for the various components and processes was developed as part of the “eVerest“ project in collaboration with partners from research and industry.

A root tip consists of constantly dividing cells of specific types which originate from a few stem cells in the stem cell niche located in the very tip of the root (white cells). IST Austria/Lukas Hörmayer

Already specified root cells are reprogrammed to correctly replace dead neighbor cells in newly discovered process of “restorative patterning” | Study published in Cell

If plants are injured, cells adjacent to the wound fill the gaps with their daughter cells. However, which cells divide to do the healing and how they manage to produce cells that match the cell type of the missing tissue has been unclear. Scientists from the Institute of Science and Technology Austria (IST Austria) have now shown that to correctly replace dead cells, neighbors to the inside of the wound re-activate their stem cell programs.

An ion between two spherical mirrors serves as a quantum sensor for light particles. Klemens Schüppert

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light. Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces with which quantum information can be transferred from matter to light and vice versa. Over such interfaces, it is anticipated that quantum computers all over the world will be able to communicate with each other via fiber optic lines in the future.