The researchers use continuous fibres in their fibre-reinforced plastics. Credits: Koziel/TUK

3D printers are becoming ever more important: they can be used to quickly produce the desired products. Researchers at Technische Universität Kaiserslautern are also working with this system: in order to optimize the printing result for plastics, they examine the conditions required during printing. In this context, the composition of the material also plays a role. With their fibre-reinforced plastic, they rely on fibres that are completely built into the plastic like a string. This is interesting, for example, for the lightweight construction of vehicles. They will present their work at the Hannover Messe from 1 to 5 April at the Rhineland-Palatinate research stand (Hall 2, Stand B40).

Flexible electronics without sintering. Free within this context; source: INM

The INM – Leibniz Institute for New Materials presents hybrid inks for inkjet printing that contain metal nanoparticles coated with conductive polymers. The inks can be formulated in water and in other polar solvents and are suitable to print conductive structures on a range of substrates without any subsequent thermal or UV treatment. Standard metal inks require annealing after inkjet printing to become conductive. INM’s new inks obviate this step, making them compatible with many substrates including thin polymer foils and paper.

The first touchscreen that taps back: Engineers Sophie Nalbach and Steffen Hau from Stefan Seelecke’s team test the prototype system that will be exhibited at Hannover Messe. Credit: Oliver Dietze

By pulsing or vibrating on demand, smartphone screens can help users navigate through a menu or can guide a user’s finger to virtual on-screen buttons that can be created or removed wherever and whenever needed. Professor Stefan Seelecke and his team at Saarland University have developed a film that gives touchscreens a third dimension. The thin and extremely lightweight silicone film can adopt a variety of positions and shapes and can be made to execute a single pulse, a pushing motion, a sudden jolt or a prolonged vibration at a specific location on the screen. The polymer film also exhibits sensor properties and can therefore provide the device with an added sense organ.

(c) Saarland University

Strong enough not only for use in impact protection systems in cars, but able to absorb the shock waves produced by a detonation. Those are just some of the properties shown by the metallic foams developed by materials scientists Stefan Diebels and Anne Jung at Saarland University. Their super lightweight and extremely strong metal foams can be customized for a wide range of applications. The inspiration for the new foam system came from nature: bones. Using a patented coating process, the Saarbrücken team is able to manufacture highly stable, porous metallic foams that can be used, for example, in lightweight construction projects.

Melvin Chelli and Fabian Laurent, student research assistants in Uwe Hartmann’s group, prepare the magnetic field sensor for presentation at the international industrial trade show Hannover Messe. Credit: Oliver Dietze

Physicists at Saarland University have developed magnetic field sensors that are breaking sensitivity records and opening up a whole range of potential new applications, from non-contact measurements of the electrical activity in the human heart or brain to detecting ore deposits or archaeological remains deep underground. Professor Uwe Hartmann and his research team have developed a system that allows them to detect weak magnetic signals over large distances in normal environments (no vacuum, no low temperatures, no shielding), despite the presence of numerous sources of interference.

The Diamor® coating developed at the Fraunhofer IWS could contribute to reduce CO2 emissions by reducing friction in the engine cylinder between the coated piston pin and the connecting rod bushing. © Fraunhofer IWS Dresden

Together with the automotive industry, researchers at the Fraunhofer IWS have been working to develop processes for friction-reducing surfaces of engine components over the past few years. Now, carbon dioxide emissions can be reduced even further by enhancing surface technology. The Dresden Institute is researching in this direction with various partners in the joint project "Prometheus".

Part of a hybrid rocker panel locally functionalized using laser-assisted tape placement. Foto: Fraunhofer IPT

In recent years there has been a sharp increase in demand for lighter components for applications in mobility and transport in response to the need to save weight, and therefore energy and resources. Hybrid components made of steel, locally functionalized with fiber-reinforced plastics combine high mechanical performance with low weight. Demand for manufacturing processes conducive to cost-effective mass-production is burgeoning.

Hot springs such as the Tengchong Yunnan hot spring in China are a preferred habitat of the investigated microorganisms. Credit: Prof. Wenjun Li

Methane is not only a powerful greenhouse gas, but also a source of energy. Microorganisms therefore use it for their metabolism. They do so much more frequently and in more ways than was previously assumed, as revealed by a study now published in Nature Microbiology by researchers from the Max Planck Institute for Marine Microbiology and Jiao Tong University in Shanghai. 

Three-dimensional structure of skyrmions. (c) Max Planck Institute for Intelligent Systems.

Skyrmions are three-dimensional structures that occur in magnetic materials. They are magnetic vortices a few nanometers in size in which atomic elementary magnets are arranged in closed vortex structures. Skyrmions are topologically protected, meaning that their shape cannot be changed. First described in the 1950s by the mathematician Tony Skyrme, their three-dimensional structure is less than one hundred nanometers in size. It was thus not possible to make the structure visible – until now. 

The desired nanographenes form like dominoes via cyclodehydrofluorination on the titanium oxide surface. All ‘missing’ carbon-carbon bonds are thus formed after each other in a formation that resembles a zip being closed. (Image: FAU/Konstantin Amsharov)

Nanostructures based on carbon are promising materials for nanoelectronics. However, to be suitable, they would often need to be formed on non-metallic surfaces, which has been a challenge – up to now. Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have found a method of forming nanographenes on metal oxide surfaces. Their research, conducted within the framework of collaborative research centre 953 – Synthetic Carbon Allotropes funded by the German Research Foundation (DFG), has now been published in the journal Science.

Marie Claude Bay and Corsin Battaglia work in a glove box on the solid state batteries of the future. Empa

As part of a strategic international cooperation program of the Fraunhofer-Gesellschaft, Empa in Dübendorf (CH) and the Fraunhofer Institute for Silicate Research ISC in Würzburg (D) launched a three-year joint research project at the beginning of January to create the basis for a produc-tion-ready next generation of traction batteries for electric cars. In contrast to lithium-ion cells currently in use, these will consist only of solids and will no longer contain flammable liquid electrolytes. The Fraunhofer ISC contributes its know-how in process development and battery cell production and produces the first prototypes.

Prototypes of the eyecatcher motorcycle jacket with luminous integrated flexible OLEDs at LOPEC 2019. © EMDE development of light GmbH

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

Trimming of a hybrid car roof bow made of glass and carbon-fiber reinforced plastic. Fraunhofer ILT, Aachen, Germany.

Since composites combine the advantages of dissimilar materials, they can be used to exploit great potential in lightweight construction. At JEC World 2019 in Paris in March, scientists from the Fraunhofer Institute for Laser Technology ILT will present a broad range of laser-based technologies for the efficient production and processing of composite materials. Visitors to the joint booth of the Aachen Center for Integrative Lightweight Construction AZL, Hall 5A/D17, will gain insight into joining and cutting processes as well as surface structuring.

Prof. Dr. Ulrich Herrlinger and Dr. Christina Schaub with pictures of a glioblastoma patient after combination therapy. Photo: © Katharina Wislsperger/Kommunikation und Medien des UKB

Cancer researchers at the University of Bonn have reported significant progress in the treatment of glioblastoma. About one third of all patients suffer from a particular variant of this most common and aggressive brain tumor. Survival of these patients treated with the new combination therapy increased on average by nearly half compared to patients who received the standard therapy. The study has now been published in the journal “The Lancet”.

Laser cut decorative wooden and HPL-elements can be equipped with fireproofing now. Bruag AG

Together with BRUAG Fire Protection AG, Empa specialists have developed a new flame retardant for wood and wood-based materials. The colourless additive, which can be easily mixed with coatings and cellulose materials, opens up new applications for wood processing companies. Fire protection requirements are increasing worldwide - especially in public buildings and vehicle construction. This development means that more and more otherwise suitable materials such as wood can no longer be used in many buildings or means of transport and must be substituted by other products. The aim of the CTI funded research project was therefore to develop a flame retardant that increases the fire resistance of such materials without impairing the positive properties of the materials.

 

Summary of Paneth cell defensins mediated antimicrobial defense mechanisms. Jan Wehkamp, University Hospital Tübingen

A group of researchers at the University Hospital Tübingen has now reported for the first time that they have discovered a mechanism on how the body’s own endogenous antimicrobial defense shield regulates the microbiome and its bacterial composition; the article has been published in a recent edition of “Proceedings” by the National Academy of Science USA” (PNAS). This mechanism provides a fundamental understanding of the structure of the intestinal barrier and host microbial interaction. “It throws open the door for future approaches to new treatments, but also for developing antibiotics and beneficial microbiome modulation,” says the head of the working group, Professor Dr. Jan Wehkamp.