Nanotechnology, according to Prof. Gregor Luthe (nano-toxicologist and President at Nanobay) has always been present, since the beginning of time. Matter was created after the big bang from nanoparticles attracted by each other to form all what is around us and made us. We are nanotechnology – the entire world – the space! And yes there is plenty of room at the bottom to have space for all the great opportunities mankind will be offered.

Nanotechnology is not just a size matter, but a kiss of classical and quantum mechanics. While the computer has changed our lives, Nanotechnology will be the revolution of our life. Even better, the computer already applies nanotechnology in the best sense of the meaning. Nanotechnology will be the big leap for mankind to get answers to the pressing questions we are facing: environmental pollution, smart energy, health, food supplies and portable water for all. Nanotechnology already offers answers to cure severe diseases and it is still full of surprises and opportunities in all kind of disciplines.

  • 3D printing to repair damage in the human body

    Dr. Ivan Minev in front of his 3D printer © BIOTEC

    Freigeist Fellowship supports Dr. Ivan Minev in using 3D printing to find ways to repair damage in the human body.
    Dr. Ivan Minev, research group leader at the BIOTEC/CRTD, has been awarded a Freigeist Fellowship from the VolkswagenStiftung. This five-year, 920.000 EUR grant will enable him to establish his own research team. The ‘Freigeist’ initiative is directed toward enthusiastic scientists and scholars with an outstanding record that are given the opportunity to enjoy maximum freedom in their early scientific career.

  • 8 applications of nanocoatings

    Waterproof coating

    Nanocoating is the result of an application where nano structures build a consistent network of molecules on a surface. This entails the chemical process where the surface can be designed to become (super) hydrophobic or hydrophilic for example. Nanocoating is a growing line and some of its applications are already in use whereas many more, with great potential, are being researched on. In this article we will look at the top 8 applications of nanocoating that is currently being used.

  • A drop of water as a model for the interplay of adhesion and stiction

    A drop of water as a model for the interplay of adhesion and stiction picture 1 | Electrochemistry in a drop: Superposition of seven dynamic contact angle measurements of a drop of water on a surface; diameter of vertical tube capillary 0.85 mm. UZH

    Physicists at the University of Zurich have developed a system that enables them to switch back and forth the adhesion and stiction (static friction) of a water drop on a solid surface. The change in voltage is expressed macroscopically in the contact angle between the drop and the surface. This effect can be attributed to the change in the surface properties on the nanometer scale.

  • A hydrophobic membrane with nanopores for highly efficient energy storage

    A hydrophobic membrane with nanopores for highly efficient energy storage | Lab set-up of a redox flow battery with the hydrophobic membrane (grey device at the bottom of the image) and two electrolyte reservoirs (bottles with yellow liquid). Image: Philipp Scheffler / DWI

    Storing fluctuating and delivering stable electric power supply are central issues when using energy from solar plants or wind power stations. Here, efficient and flexible energy storage systems need to accommodate for fluctuations in energy gain. Scientists from the Leibniz Institute for Interactive Materials (DWI), RWTH Aachen University and Hanyang University in Seoul now significantly improved a key component for the development of new energy storage systems.

  • A Nano-Roundabout for Light

    Functional principle of a nano-roundabout.  © TU Wien

    At TU Wien, it was possible to create a nanoscale optical element that regulates the flow of light particles at the intersection of two glass fibers like a roundabout. A single atom was used to control the light paths. Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a rule for light signals. For this purpose, the two glass fibers were coupled at their intersection point to an optical resonator, in which the light circulates and behaves as in a roundabout. The direction of circulation is defined by a single atom coupled to the resonator. The atom also ensures that the light always leaves the roundabout at the next exit. This rule is still valid even if the light consists merely of individual photons. Such a roundabout will consequently be installed in integrated optical chips – an important step for optical signal processing.

  • A signal boost for molecular microscopy

    A signal boost for molecular microscopy | Schematic illustration of the experiment. Graphic: MPQ, Laser Spectroscopy Division

    Cavity-enhanced Raman-scattering reveals information on structure and properties of carbon nanotubes. The inherently weak signals are amplified by using special micro cavities as resonator, giving a general boost to Raman spectroscopy as a whole.

  • Applications of Graphene

    Application of Graphene

    In order to get introduced to Graphene, a good point of start would be Graphite. Graphite is a naturally-occurring form of crystalline carbon. It is a native element mineral found in metamorphic and igneous rocks. Regarding its composition, Graphite is a stack of carbon-atom layers.

  • Applications of nanoparticles

    Nanoparticles are particles between 1 and 100 nanometers in size. In nanotechnology, a particle is defined as a small object that behaves as a whole unit with respect to its transport and properties. Particles are further classified according to diameter. Ultra fine particles are the same as nanoparticles and between 1 and 100 nanometers in size, fine particles are sized between 100 and 2,500 nanometers, and coarse particles cover a range between 2,500 and 10,000 nanometers. Nanoparticle research is currently an area of intense scientific interest due to a wide variety of potential applications in biomedical, optical and electronic fields.

  • Better Contrast Agents Based on Nanoparticles

    Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging. This new type of nanoparticles produce around ten times more contrast than common contrast agents and are responsive to specific environments. The journal Chemical Communications has published these results.

  • Breakthrough in materials science: Kiel research team can bond metals with nearly all surfaces

    The targeted etching process of “nanoscale-sculpturing” roughens the upper layer of metal (here aluminium, 20 µm = 0.02 mm), thereby creating a 3D-structure with tiny hooks.   Melike Baytekin‐Gerngroß

    How metals can be used depends particularly on the characteristics of their surfaces. A research team at Kiel University has discovered how they can change the surface properties without affecting the mechanical stability of the metals or changing the metal characteristics themselves. This fundamentally new method is based on using an electro-chemical etching process, in which the uppermost layer of a metal is roughened on a micrometer scale in a tightly-controlled manner. Through this “nanoscale-sculpturing” process, metals such as aluminium, titanium, or zinc can permanently be joined with nearly all other materials, become water-repellent, or improve their biocompatibility.

  • Carbon nanotubes - The basics

    Single-walled-carbon nanotubes and multi-walled-carbon nanotubes molecular structure

    Till 1980 only three forms of carbon were known, namely diamond, graphite, and amorphous carbon. Nowadays a whole family of other forms of carbon is known. The hollow, cage like buckminsterfullerene molecule – also known as the buckyball, or the C60 fullerene, was the first to be discovered. These days there are much more forms of fullerenes, and also a widespread family of linear molecules, carbon nanotubes known.

  • Carbon Nanotubes Couple Light and Matter

    The formation of exciton-polaritons through strong light-matter coupling is a promising strategy for producing electrically pumped carbon-based lasers. Scientists from Heidelberg University and the University of St Andrews (Scotland) have now, for the first time, demonstrated this strong light-matter coupling in semiconducting carbon nanotubes. Figure: Arko Graf (Heidelberg University)

    Scientists from Heidelberg and St Andrews work on the basics of new light sources from organic semiconductors. With their research on nanomaterials for optoelectronics, scientists from Heidelberg University and the University of St Andrews (Scotland) have succeeded for the first time to demonstrate a strong interaction of light and matter in semiconducting carbon nanotubes. Such strong light-matter coupling is an important step towards realising new light sources, such as electrically pumped lasers based on organic semiconductors. They would be, amongst other things, important for applications in telecommunications. These results are the outcome of a cooperation between Prof. Dr Jana Zaumseil (Heidelberg) and Prof. Dr Malte Gather (St Andrews), and have been published in “Nature Communications”.

  • Chemists Create Clusters of Organelles by Mimicking Nature

    Two polymersomes assemble by DNA hybridization: the single DNA strands on the surface of the compartments interconnect, creating an extremely stable DNA bridge. University of Basel

    Scientists from the University of Basel have succeeded in organizing spherical compartments into clusters mimicking the way natural organelles would create complex structures. They managed to connect the synthetic compartments by creating bridges made of DNA between them. This represents an important step towards the realization of so-called molecular factories. The journal Nano Letters has published their results.

  • Computers Made of Genetic Material? - ZDR researchers conduct electricity using DNA-based nanowires

    Scientists at Helmholtz-Zentrum Dresden-Rossendorf conducted electricity through DNA-based nanowires by placing gold-plated nanoparticles on them.

    Tinier than the AIDS virus – that is currently the circumference of the smallest transistors. The industry has shrunk the central elements of their computer chips to fourteen nanometers in the last sixty years. Conventional methods, however, are hitting physical boundaries. An alternative could be the self-organization of complex components from molecules and atoms. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Paderborn University have now made an important advance: the physicists conducted a current through gold-plated nanowires, which independently assembled themselves from single DNA strands. Their results have been published in the scientific journal Langmuir.

  • Defects at the spinterface disrupt transmission

    An organic radical approaches a lattice of rutile crystals (red) – here with an ideal surface free of defects Graphic: Benedetta Casu and Arrigo Calzolari

    Tübingen researchers put metal-oxides and organic magnets together; applications for electronics in sight

  • ERC Grant: Nanopartikel-Katalysatoren in Form bringen

    Beatriz Roldán Cuenya erhält eine renommierte Förderung vom Europäischen Forschungsrat. © RUB, Marquard

    Prof. Dr. Beatriz Roldán Cuenya von der Ruhr-Universität Bochum (RUB) erhält einen der renommierten Consolidator Grants vom Europäischen Forschungsrat (ERC). Die Förderung beläuft sich auf zwei Millionen Euro für fünf Jahre. Die Wissenschaftlerin strebt an, mit den Mitteln neue Einblicke in die katalytischen Fähigkeiten von Nanopartikeln zu gewinnen, insbesondere wie sich Größe, Form und chemischer Zustand der Partikel während einer katalytischen Reaktion ändern. Winzige Metallpartikel, gerade einmal 1 bis 50 Nanometer groß, können als Katalysatoren für verschiedene Reaktionen dienen. Mehrere Parameter beeinflussen die katalytische Aktivität der Nanopartikel: ihre Größe und Form, das Trägermaterial, an das die Partikel gebunden sind, die Umgebung sowie der chemische Zustand der Partikel, also zum Beispiel ob sie als reines Metall oder als Oxid vorliegen.

  • Exotischer Materiezustand: "Flüssige" Quantenspins bei tiefsten Temperaturen beobachtet

    Exotischer Materiezustand Flüssige Quantenspins bei tiefsten Temperaturen beobachtet | Im Kristallgitter von Kalzium-Chrom-Oxid gibt es sowohl ferromagnetische Wechselwirkungen (grüne und rote Balken) als auch antiferromagnetische (blaue Balken). Abbildung: HZB

    Ein Team am HZB hat experimentell eine sogenannte Quanten-Spinflüssigkeit in einem Einkristall aus Kalzium-Chrom-Oxid nachgewiesen. Dabei handelt es sich um einen neuartigen Materiezustand. Das Besondere an dieser Entdeckung: Nach gängigen Vorstellungen war das Quantenphänomen in diesem Material gar nicht möglich. Nun liegt eine Erklärung vor. Die Arbeit erweitert das Verständnis von kondensierter Materie und könnte auch für die zukünftige Entwicklung von Quantencomputern von Bedeutung sein. Die Ergebnisse sind nun in Nature Physics veröffentlicht.

  • FLASH observes exploding xenon nanoparticles

    With the bright X-ray flashes from FLASH the scientists made xenon clusters explode. The same flash allowed the researchers to record the structure of the cluster just before the explosion (top). With an ion spectrometer the scientists recorded the debris from the explosion (below). Credit: Daniela Rupp/Technical University of Berlin

    DESY’s X-ray laser offers new insights into the interaction between light and matter

  • Forscher sehen Biomolekülen bei der Arbeit zu

    Ein Cytochrom-Molekül  wurde mit einem magnetischen Etikett versehen (farbige Struktur rechts oben). Zusammen mit einem Bestandteil des Cytochroms (rot) konnte dann der Abstand bestimmt werden. © AG Schiemann/Uni Bonn

    Wissenschaftlern der Universität Bonn ist es gelungen, einem wichtigen Zellprotein bei der Arbeit zuzusehen. Sie nutzten dazu eine Methode, mit der man Strukturänderungen komplexer Moleküle messen kann. Das weiter entwickelte Verfahren erlaubt es, derartige Prozesse in der Zelle zu beobachten, also der natürlichen Umgebung. Die Forscher stellen zudem eine Art Werkzeugkasten zur Verfügung, der die Vermessung unterschiedlichster Moleküle erlaubt. Ihre Studie ist jetzt in der Zeitschrift „Angewandte Chemie International Edition“ erschienen. Wenn wir eine vorweihnachtliche Walnuss öffnen wollen, benutzen wir dazu in der Regel einen Nussknacker. Der besteht im einfachsten Fall aus zwei Schenkeln, die sich um ein Gelenk gegeneinander bewegen und so Druck auf die Schale ausüben können. Ganz simpel, eigentlich – um zu begreifen, wie so ein Nussknacker funktioniert, genügt es uns, ihn ein einziges Mal in Aktion zu sehen.

  • Graphene aids optical study of dye molecules

    Graphene aids optical study of dye molecules | Figure: Regular arrangements of dye molecules on graphene. Top: The particular dye molecule used in the study. Image reproduced from original publication.

    By using graphene as substrate, dye molecules self-assemble and form monolayers of high regularity. This increases their optical properties significantly.