Photonics is science of light generation, detection, and manipulation through emission, transmission, modulation, signal processing, switching, amplification, and detection/sensing.

Photonic methods are applied in various areas including telecommunication, Product Identification systems, Medicine, Industrial manufacturing, aviation and military among others.

  • A Nano-Roundabout for Light

    Functional principle of a nano-roundabout.  © TU Wien

    At TU Wien, it was possible to create a nanoscale optical element that regulates the flow of light particles at the intersection of two glass fibers like a roundabout. A single atom was used to control the light paths. Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a rule for light signals. For this purpose, the two glass fibers were coupled at their intersection point to an optical resonator, in which the light circulates and behaves as in a roundabout. The direction of circulation is defined by a single atom coupled to the resonator. The atom also ensures that the light always leaves the roundabout at the next exit. This rule is still valid even if the light consists merely of individual photons. Such a roundabout will consequently be installed in integrated optical chips – an important step for optical signal processing.

  • A signal boost for molecular microscopy

    A signal boost for molecular microscopy | Schematic illustration of the experiment. Graphic: MPQ, Laser Spectroscopy Division

    Cavity-enhanced Raman-scattering reveals information on structure and properties of carbon nanotubes. The inherently weak signals are amplified by using special micro cavities as resonator, giving a general boost to Raman spectroscopy as a whole.

  • Aus zwei mach eins: Wie aus grünem Licht blaues wird

    Aus zwei mach eins Wie aus grünem Licht blaues wird | Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) Abbildung: Michael Oldenburg

    Die Hochkonversion von Photonen ermöglicht, Licht effizienter zu nutzen: Zwei Lichtteilchen werden in ein Lichtteilchen mit höherer Energie umgewandelt. Forscher am KIT haben nun erstmals gezeigt, dass innere Grenzflächen zwischen oberflächengebundenen metallorganischen Gerüstverbindungen (SURMOFs) sich optimal dafür eignen – sie haben aus grünem Licht blaues Licht gemacht. Dieses Ergebnis wurde nun in der Fachzeitschrift Advanced Materials vorgestellt und eröffnet neue Möglichkeiten für optoelektronische Anwendungen wie Solarzellen oder Leuchtdioden. (DOI: 10.1002/adma.201601718)

  • Bern-made laser altimeter taking off to Mercury

    The BepiColombo Laser Altimeter (BELA) University of Bern / Ramon Lehmann

    University of Bern’s Laser Altimeter BELA has been successfully tested during the last weeks and the last components will be delivered to ESA on 5 October. The first laser altimeter for inter-planetary flight to be built in Europe is part of the ESA BepiColombo mission to Mercury. Starting in 2024, it will provide data about the planet’s surface.

  • Carbon Nanotubes Couple Light and Matter

    The formation of exciton-polaritons through strong light-matter coupling is a promising strategy for producing electrically pumped carbon-based lasers. Scientists from Heidelberg University and the University of St Andrews (Scotland) have now, for the first time, demonstrated this strong light-matter coupling in semiconducting carbon nanotubes. Figure: Arko Graf (Heidelberg University)

    Scientists from Heidelberg and St Andrews work on the basics of new light sources from organic semiconductors. With their research on nanomaterials for optoelectronics, scientists from Heidelberg University and the University of St Andrews (Scotland) have succeeded for the first time to demonstrate a strong interaction of light and matter in semiconducting carbon nanotubes. Such strong light-matter coupling is an important step towards realising new light sources, such as electrically pumped lasers based on organic semiconductors. They would be, amongst other things, important for applications in telecommunications. These results are the outcome of a cooperation between Prof. Dr Jana Zaumseil (Heidelberg) and Prof. Dr Malte Gather (St Andrews), and have been published in “Nature Communications”.

  • Electric field shakes a magnet in one trillionth of a sec. Novel method of spin control discovered

    An intense THz pulse (red waveform) changes the electronic orbitals of a magnetic material leading to oscillation of spins (compass needles). Dr. Rostislav Mikhaylovskiy

    An international team of scientists from Germany, the Netherlands and Russia has successfully demonstrated a novel, highly efficient and ultrafast magnetization control scheme by employing electromagnetic waves oscillating at terahertz frequencies. The new concept will be published in the upcoming issue of Nature Photonics.

  • Entwicklung neuer Entspiegelungen mithilfe nanostrukturierter Schichtmaterialien

    Entwicklung neuer Entspiegelungen mithilfe nanostrukturierter Schichtmaterialien | Halbseitig entspiegelte Linse Photo: W. Oppel, Fraunhofer IOF

    Optische Komponenten begleiten uns in nahezu allen Alltagsanwendungen – von Handykameras über Abstandssensoren in Autos bis hin zu Objektiven für hochauflösende Kameras. Doch ohne Entspiegelung gehen an jeder Grenzfläche einer optischen Komponente mehrere Prozent des Lichtes verloren. Deshalb sind heute insbesondere Systeme aus mehreren Linsen wie z.B. in Fotoapparaten oder Fahrzeugdisplays ohne Antireflex (AR)-Funktion undenkbar. Forschern gelang es nun, erfolgreich eine neue Methode der Entspiegelung mithilfe nanostrukturierter Schichtmaterialien zu entwickeln.

  • Etching Microstructures with Lasers

    Structuring process for glass using direct laser ablation with ultrafast laser pulses. Fraunhofer ILT, Aachen / Volker Lannert.

    Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

  • First quantum photonic circuit with electrically driven light source

    Graphic representation of part of a chip, showing with photon source, detector and waveguides Illustration: Münster University/Wolfram Pernice

    Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

  • Flexible OLEDs glowing from first European open access pilot line

    Flexible OLED on plastic web. Fraunhofer FEP

    Fraunhofer FEP has extensive and long lasting expertise and know-how in operation of its R&D lines for manufacturing of OLED lighting devices. As one of the core team partners within the European pilot line project PI-SCALE Fraunhofer FEP presents first demonstrators of flexible OLED out from this project. The demonstrators represent results from first pilot line production within the PI-SCALE project at the IDW 23rd International Display Workshops in Fukuoka, Japan, from December 7 – 9, 2016 on 4th floor, booth no. 13.

  • Forscher entdecken neue chemische Verbindung

    Wissenschaftler der Universität Leipzig haben in Zusammenarbeit mit Kollegen der Friedrich-Alexander Universität Erlangen-Nürnberg und der Staatlichen Universität für Informationstechnologien, Mechanik und Optik (ITMO) in St. Petersburg eine ganz neue Eigenschaft einer chemischen Verbindungsklasse entdeckt. "Neben interessanten magnetischen Eigenschaften zeichnen sich Kristalle dieser Verbindung auch durch sogenannte Doppelbrechung aus", erklärt Prof. Dr. Evamarie Hey-Hawkins, Chemikerin der Universität Leipzig und Leiterin der Arbeitsgruppe. Ihre Forschungsergebnisse haben die Wissenschaftler in der renommierten Fachzeitschrift "Dalton Transactions" als Titelbeitrag veröffentlicht.

  • Glass-on-glass lamination for large-area OLEDs right from the roll

    The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be presenting flexible organic light-emitting diodes (OLEDs) at AIMCAL 2016 in Dresden, Germany, from May 30th to June 2nd, 2016. These OLEDs have been fabricated on ultra-thin glass and encapsulated with a ultra-thin glass foil in the same process.

  • Graphene aids optical study of dye molecules

    Graphene aids optical study of dye molecules | Figure: Regular arrangements of dye molecules on graphene. Top: The particular dye molecule used in the study. Image reproduced from original publication.

    By using graphene as substrate, dye molecules self-assemble and form monolayers of high regularity. This increases their optical properties significantly.

  • HI4PI: A new all-sky survey of neutral hydrogen

    The entire sky in the light of neutral atomic hydrogen (HI) as seen by the Parkes and Effelsberg radio telescope with the Milky Way in the middle. HI4PI Collaboration

    Two of the world's largest fully steerable radio telescopes, the 100-m dish at Effelsberg/Germany and the 64-m Parkes/Australia telescope, mapped the detailed structure of neutral hydrogen across the Northern and Southern hemispheres. Today, the complete survey, HI4PI, is released to the scientific community. It discloses a wealth of fine details of the large scale structure of the Milky Way's gas distribution. HI4PI is the product of a joined effort of astronomers of many countries and will be a mile stone for the decades to come.

  • Humboldt Fellowship for research on tunable optical surfaces for Terahertz technology

    Dr. Corey Shemelya. Thomas Koziel/TU Kaiserslautern

    U.S. scientist Dr. Corey Shemelya has recently started a research stay at the University of Kaiserslautern in the form of a fellowship granted by the Alexander von Humboldt Foundation. Dr. Shemelya is studying structured optical surfaces which hold potential applications in communication technology and Terahertz imaging, e.g. body scanning equipment for airport safety. Shemelya is working in conjunction with the Terahertz Technology Laboratory of Professor Marco Rahm at the Department of Electrical and Computer Engineering and the State Research Center for Optical and Material Sciences (OPTIMAS).

  • Kristallzüchtung für komplexe Messaufgaben in der 5G-Technologie

    Kristallzüchtung für komplexe Messaufgaben in der 5G Technologie | Ferrit-Einkristalle für Hochfrequenz-Filterkomponenten gezüchtet aus Hochtemperaturlösungen Photo: INNOVENT e.V.

    Wissenschaftler der Industrieforschungseinrichtung INNOVENT züchten einkristalline Ferritmaterialien für die Mikrowellenmesstechnik. Erstmals werden damit durchgehende Empfangsbereiche von Signal- und Spektrumanalysatoren bis 85 GHz für anspruchsvolle Messaufgaben auf den Gebieten Automotive Radar, 5G und andere drahtlose Kommunikation realisiert.

  • Light-driven atomic rotations excite magnetic waves

    Light-driven atomic rotations (spirals) induce coherent motion of the electronic spins (blue arrows). Image: J.M. Harms/MPI for the Structure and Dynamics of Matter

    Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion. Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how the ultrafast light-induced modulation of the atomic positions in a material can control its magnetization. An international research team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg used terahertz light pulses to excite pairs of lattice vibrations in a magnetic crystal.

  • MADMAX: Max Planck Institute for Physics takes up axion research

    Test setup of the experiment with sapphire plates. In the future, 80 lanthanum aluminate disks will allow the detection of axion-photon-conversion. B. Wankerl/MPP

    The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

  • Manipulating superconducting plasma waves with terahertz light

    Manipulating superconducting plasma waves with terahertz light | Josephson plasma wave in a layered superconductor, parametrically amplified through a strong terahertz light pulse. Image: J.M. Harms/MPI for the Structure and Dynamics of Matter

    Terahertz illumination amplifies Josephson plasma waves in high temperature superconductors, potentially paving the way for stabilizing fluctuating superconductivity

    Most systems in nature are inherently nonlinear, meaning that their response to any external excitation is not proportional to the strength of the applied stimulus. Nonlinearities are observed, for example, in macroscopic phenomena such as the flow of fluids like water and air or of currents in electronic circuits. Manipulating the nonlinear behavior is therefore inherently interesting for achieving control over several processes. An international team of researchers led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg utilized the nonlinear interaction between a terahertz light field and a superconducting plasma wave in a high temperature cuprate superconductor to amplify the latter. This resulted in a more coherent superconductor, which is less susceptible to thermal fluctuations. Due to the non-dissipative superconducting nature of the plasma wave, the study opens up new avenues for “plasmonics”, a field of science utilizing plasma waves for transmitting information. These findings are reported in the journal Nature Physics.

  • Nanoszene kommt im Dezember zur NRW Nano-Konferenz nach Münster

    Cluster NanoMikroWerkstoffePhotonik.NRW

    Deutschlands Nanotechnologieszene steht im Dezember ganz im Zeichen der NRW Nano-Konferenz. Sie wird am 7. und 8. Dezember erstmals in Münster/Westfalen mit Teilnehmern aus der Wissenschaft und Forschung, Wirtschaft und Politik ausgetragen. Zu diesem Szenetreff, der zum interdisziplinären Dialog über Chancen, Risiken und Potenziale der Nanotechnologie einlädt, werden rund 700 internationale Experten erwartet. Informationen, Programm und Registrierung auf