Spectroscopy

The study of the interaction between matter and electromagnetic radiation is called Spectroscopy. Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, by a prism. Later the concept was expanded greatly to include any interaction with radiative energy as a function of its wavelength or frequency. Spectroscopic data is often represented by a spectrum, a plot of the response of interest as a function of wavelength or frequency.

  • A signal boost for molecular microscopy

    A signal boost for molecular microscopy | Schematic illustration of the experiment. Graphic: MPQ, Laser Spectroscopy Division

    Cavity-enhanced Raman-scattering reveals information on structure and properties of carbon nanotubes. The inherently weak signals are amplified by using special micro cavities as resonator, giving a general boost to Raman spectroscopy as a whole.

  • Auch das Deuteron gibt Rätsel auf: Proton und Deuteron doch kleiner als gedacht?

    Auch das Deuteron gibt Rätsel auf Proton und Deuteron doch kleiner als gedacht picture1 | Karsten Schuhmann und Aldo Antognini an dem Lasersystem, das für die Laserspektroskopie eingesetzt wurde. Foto: Paul Scherrer Institut/Markus Fischer

    Das Deuteron – ein Atomkern aus nur einem Proton und einem Neutron – ist deutlich kleiner als bislang gedacht. Zu diesem Ergebnis kommt eine internationale Forschungsgruppe, die Experimente am Paul Scherrer Institut PSI durchgeführt hat. Dies passt zu einer Studie aus dem Jahr 2010, bei dem dieselbe Forschungsgruppe das Proton vermessen und damit das "Rätsel um den Protonradius" begründet hatte. Nun gibt die Deuterongrösse ein analoges Rätsel auf. Womöglich wird dies zu einer Anpassung der Rydbergkonstante führen. Die Experimente fanden an der weltweit leistungsstärksten Myonenquelle am PSI statt, wo die Forschenden mittels Laserspektroskopie sogenanntes myonisches Deuterium vermassen.

  • Die extrem breite IR-Absorptionsbande des Wassers

    Die extrem breite IR Absorptionsbande des Wassers picture 1 | Abb. 1: Die Hydratisierung von Protonen geht weit über das typische Textbuchbeispiel des Hydroniums (H₃O⁺) hinaus.

    Die Ursache der extrem breiten Infrarotabsorption von Protonen in wässriger Umgebung wird seit langem kontrovers diskutiert. Ein Forscherteam des Max-Born-Instituts in Berlin und der Ben Gurion Universität des Negev in Beer-Sheva zeigt jetzt am Beispiel des Zundel-Kations (H₂O...H⁺...OH₂) H₅O₂⁺, dass die umgebende Flüssigkeit fluktuierende elektrische Kräfte auf das Proton ausübt und damit seine Schwingungsbewegung zwischen den beiden Wassermolekülen moduliert. Dieser Mechanismus ruft zusammen mit niederfrequenten thermischen Bewegungen die extreme Verbreiterung des Infrarotspektrums hervor.

  • Kristalluntersuchung mit dreidimensionalen Beugungsmustern

    Kristalluntersuchung mit dreidimensionalen Beugungsmustern | Dreidimensionale Röntgenbeugungsmethode zur Bestimmung der kristallographischen Textur Abbildung: Wiley-VCH

    Trifft Röntgenstrahlung auf einen Kristall wird sie gebeugt und abgelenkt. Die sich daraus ergebenden Beugungsmuster werden auf einer Detektorfläche registriert und sind zweidimensionale Projektionen der Kristallstruktur. Diese Methode wird schon lange zur Strukturaufklärung genutzt. Forschern ist es nun gelungen dieser Projektion eine dritte Dimension hinzuzufügen: die Röntgenphotonenernergie.

  • Leipziger Physiker lösen 80 Jahre altes Problem der Raman-Spektroskopie

    Physiker der Universität Leipzig haben ein 80 Jahre altes Problem der sogenannten Raman-Spektroskopie gelöst. Die Forscher um Prof. Dr. Marius Grundmann stellten eine Theorie auf und erklärten damit die bei der Raman-Streuung auftretenden Intensitäten für beliebig orientierte Kristalle aller Klassen. Ihre Erkenntnisse haben sie kürzlich im Fachjournal "Physical Review Letters" veröffentlicht.

  • Matter-antimatter symmetry confirmed with precision record

    Sketch of the experimental setup used at CERN for the determination of the antiproton-to-electron mass ratio. Graphic: Masaki Hori

    CERN experiment sets precision record in the measurement of the antiproton to electron mass ratio using a new innovative cooling technique. According to the Standard Model of elementary particle physics, to each particle exists an antiparticle that is supposed to behave exactly the same way. Thus, “anti-people” in an “anti-world” would observe the same laws of physics, or make the same experiences in general, as we do. This postulate is, however, difficult to prove, since it is almost impossible to perform measurements on antimatter: whenever an antiparticle meets is matter-counterpart, both particles annihilate, accompanied by the creation of energy.

  • Molecules change shape when wet

    The preferred structure of a crown ether changes when water molecules bind to it (dashed lines). © C. Pérez et al.

    Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water. In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL and from the Hamburg Centre for Ultrafast Imaging (CUI) show that water promotes the reshaping of crown ethers and biphenyl molecules, two classes of chemically fascinating molecules. Crown ethers are key systems in catalysis, separation and encapsulation processes, while biphenyl-based systems are employed in asymmetric synthesis and drug design.

  • Multiplexed Morse signals from cells

    How many sorts, in how many copies? The biochemical processes that take place in cells require specific molecules to congregate and interact in specific locations. A novel type of high-resolution microscopy developed at the Max Planck Institute for Biochemistry in Martinsried and Harvard University already allows researchers to visualize these molecular complexes and identify their constituents. Now they can also determine the numbers of each molecular species in these structures. Such quantitative information is valuable for the understanding of cellular mechanisms and how they are altered in disease states. The new technique is described in Nature Methods.

  • Terahertzstrahlung: neuentwickelte Quelle deckt gesamtes Terahertzspektrum ab

    Terahertzstrahlung neuentwickelte Quelle deckt gesamtes Terahertzspektrum ab picture2 |Ein Laserimpuls treibt Elektronen aus einer magnetischen in eine nichtmagnetische Metallschicht. Der dabei entstehende Strom entlang des roten Pfeils erzeugt den Terahertz-Impuls. FHI/Nature Photonics 2016

    Für die Kontrolle von Lebensmitteln und Medikamenten könnte es künftig ein leistungsfähiges und preiswertes Instrument geben. Wissenschaftler des Berliner Fritz-Haber-Institutes der Max-Planck-Gesellschaft haben mit nationalen und internationalen Partnern eine neuartige Quelle für Terahertzstrahlung entwickelt die erstmals das gesamte Terahertzspektrum abdeckt. Somit wird es deutlich einfacher, diese Strahlung zu erzeugen, die sich gut zur Analyse weicher Materialien eignet und daher künftig vermehrt in der Lebensmittel- und Pharmaindustrie Anwendung finden könnte.

  • Ultraschnelle Photoelektronenspektroskopie enthüllt Ringen zwischen Autoionisationskanälen

    Mit Hilfe von zeit-, energie- und winkelaufgelöster Photoelektronenspektroskopie gelang es Forschern vom Max-Born-Institut in Berlin, in Kooperation mit Kollegen aus Mailand und Padua, Schnappschüsse von gekoppelten Rydbergorbitalen während ultraschneller Autoionisation aufzunehmen.

  • Unexpected flexibility found in odorant molecules

    Unexpected flexibility found in odorant molecules | Structure of the most stable globular form of citronellal. Image: S. R. Domingos / MPI for the Structure and Dynamics of Matter

    High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

    In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter at the Center for Free-Electron Laser Science and from the Hamburg Centre for Ultrafast Imaging (CUI) led by Melanie Schnell have unraveled the complex conformational landscape of an odorant biomolecule.