Virus

  • Hepatitis C and HIV prophylaxis: microwave reduces viral transmission in the drugs scene

    PD Dr. Eike Steinmann und Anindya Siddharta. TWINCORE/Romy Weller

    Infections with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) among people who inject drugs (PWID) are a global health problem. For example, sharing of drug preparation equipment within this population contributes to more than 80% of newly acquired HCV infections. As a response to these circumstances, scientists at TWINCORE validated a simple and safe method to reduce the risk of viral transmission, namely by microwave irradiation. This method has been published recently in Scientific Reports.

  • Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

    Nanoparticles from combustion engines (shown here) can activate viruses that are dormant in in lung tissue.  Source: Helmholtz Zentrum München

    Nanoparticles from combustion engines can activate viruses that are dormant in in lung tissue cells. This is the result of a study by researchers of Helmholtz Zentrum München, a partner in the German Center for Lung Research (DZL), which has now been published in the journal ‘Particle and Fibre Toxicology’.

    To evade the immune system, some viruses hide in cells of their host and persist there. In medical terminology, this state is referred to as a latent infection. If the immune system becomes weakened or if certain conditions change, the viruses become active again, begin to proliferate and destroy the host cell. A team of scientists led by Dr. Tobias Stöger of the Institute of Lung Biology and Prof. Dr. Heiko Adler, deputy head of the research unit Lung Repair and Regeneration at Helmholtz Zentrum München, now report that nanoparticles can also trigger this process.

  • “Personalized Tumor Therapy” at Fraunhofer ITEM – project group will become an institute division

    Isolation of a single disseminated cancer cell by micromanipulation. Knowledge about the characteristics of such a single cell provides the basis for development of more effective systemic therapies. Photo: Ralf Mohr; Fraunhofer ITEM

    (Hannover, Germany) The Fraunhofer Project Group for Personalized Tumor Therapy will become a division of the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM in Hannover as of January 2017 and will thus be included in the financing model of the Fraunhofer-Gesellschaft. The project group was founded in December 2010 as a research collaboration between the Fraunhofer-Gesellschaft, the Land of Bavaria, and the University of Regensburg. During the past five years, the team of scientists in Regensburg has been organizationally attached to the Fraunhofer ITEM in Hannover, funded by the Bavarian government.