• Evonik Research Prize for lithium-ion battery test cell with separated electrodes

    A glass ceramic membrane, coated with aluminum and plastic, allows only lithium ions to pass through. It is impermeable to all other components of the electrolyte fluid. Photo: Monika Weiner / TUM

    For years, small rechargeable lithium-ion batteries have reliably supplied billions of portable devices with energy. But manufacturers of high-energy applications such as electric cars and power storage systems seek for new electrode materials and electrolytes. Michael Metzger, researcher at the Technical University of Munich (TUM), has now developed a new battery test cell allowing to investigate anionic and cationic reactions separately. Recently the researcher was honored with the Evonik Research Prize for his work.

  • Molecules change shape when wet

    The preferred structure of a crown ether changes when water molecules bind to it (dashed lines). © C. Pérez et al.

    Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water. In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL and from the Hamburg Centre for Ultrafast Imaging (CUI) show that water promotes the reshaping of crown ethers and biphenyl molecules, two classes of chemically fascinating molecules. Crown ethers are key systems in catalysis, separation and encapsulation processes, while biphenyl-based systems are employed in asymmetric synthesis and drug design.

  • Single crystal growth in hot air: nice and easy

    Schematic of the growth setup. The desired single crystals grow from separated educts at 1020°C via vapor transport. The condensation takes place at spikes placed in between the starting materials. © University of Augsburg/EP VI

    Physicists from Augsburg University together with colleagues from Oxford report on a novel method for the growth of lithium-based transition metal oxides. Augsburg/PhG/KPP -The synthesis of ceramic crystals often requires very complicated methods. Starting materials in form of powders have to be mixed, pressed and pre-reacted in order to allow for single crystal growth from the melt at elevated temperatures. Or samples are grown from solution or chemical vapor transport in complex processes. However, so far none of the established methods yields single crystals of lithium iridate - despite the great interest in this material that was initiated by the prediction of highly unusual magnetic properties.