Astrophysics

  • Gravitationswellen als Sensor für Dunkle Materie

    Falls der Dunkle-Materie-Halo einer Galaxie aus einem Bose-Einstein-Kondensat (BEK) sehr leichter Teilchen besteht, werden durchgehende Gravitationswellen (GW), nicht aber Lichtwellen (γ) gebremst. Grafik: MPIK

    Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte. Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die experimentelle Suche konnte bisher nur Teilchenarten bzw. Energiebereiche ausschließen; gelegentliche Erfolgsmeldungen und Vermutungen ließen sich nicht verifizieren. Es sind aber noch längst nicht alle theoretischen Vorschläge überprüft.

  • HI4PI: A new all-sky survey of neutral hydrogen

    The entire sky in the light of neutral atomic hydrogen (HI) as seen by the Parkes and Effelsberg radio telescope with the Milky Way in the middle. HI4PI Collaboration

    Two of the world's largest fully steerable radio telescopes, the 100-m dish at Effelsberg/Germany and the 64-m Parkes/Australia telescope, mapped the detailed structure of neutral hydrogen across the Northern and Southern hemispheres. Today, the complete survey, HI4PI, is released to the scientific community. It discloses a wealth of fine details of the large scale structure of the Milky Way's gas distribution. HI4PI is the product of a joined effort of astronomers of many countries and will be a mile stone for the decades to come.

  • Home computers discover a record-breaking pulsar-neutron star system

    The Pulsar PSR J1913+1102 was found with the Einstein@Home project on the computers of two of the participants in this project, Uwe Tittmar from Germany and Gerald Schrader from the US. Max Planck Institute for Gravitational Physics/B. Knispel (photo), NASA (pulsar illustration).

    Almost 25,000 light years away, two dead stars orbit one another. Each more massive than our Sun, only 20 km in diameter, and less than five hours per orbit. This unusual pair was discovered by an international team of scientists – including researchers from two MPIs (Gravitational Physics and Radio Astronomy) – and by volunteers from the distributed computing project Einstein@Home. Only 14 similar binary systems are known so far, and the new one also is the most massive of those. Such systems enable some of the most precise tests of Einstein’s theory of general relativity. They also play an important role as potential gravitational-wave sources for the LIGO detectors. Neutron stars are the highly magnetized and extremely dense remnants of supernova explosions. Like a rapidly rotating cosmic lighthouse they emit beams of radio waves into space. If Earth happens to lie along one of the beams, large radio telescopes can detect the neutron star as a pulsating celestial source: a radio pulsar.