• Bern-made laser altimeter taking off to Mercury

    The BepiColombo Laser Altimeter (BELA) University of Bern / Ramon Lehmann

    University of Bern’s Laser Altimeter BELA has been successfully tested during the last weeks and the last components will be delivered to ESA on 5 October. The first laser altimeter for inter-planetary flight to be built in Europe is part of the ESA BepiColombo mission to Mercury. Starting in 2024, it will provide data about the planet’s surface.

  • Countdown to the space mission “Solar Orbiter”: Measuring instruments from Kiel start their voyage

    The three sensors from Kiel are ready for space: EPT-HET1 and 2 on the left, and STEP on the right. Photo/Copyright: Jürgen Haacks, CAU

    Around five years ago, a team led by a physicist from Kiel University, Professor Robert Wimmer-Schweingruber, won the coveted tender for providing instruments to be placed on board the “Solar Orbiter” space probe. This joint mission of the European Space Agency (ESA) and the US space agency NASA is expected to launch in October 2018, and will go closer to the sun than has ever been done before. Now, exactly on schedule, the preparations in Kiel for this mission are entering their final phase. On Monday 21 November the flight instruments from Kiel will be handed over to the space probe installation team in England.

  • Electric field shakes a magnet in one trillionth of a sec. Novel method of spin control discovered

    An intense THz pulse (red waveform) changes the electronic orbitals of a magnetic material leading to oscillation of spins (compass needles). Dr. Rostislav Mikhaylovskiy

    An international team of scientists from Germany, the Netherlands and Russia has successfully demonstrated a novel, highly efficient and ultrafast magnetization control scheme by employing electromagnetic waves oscillating at terahertz frequencies. The new concept will be published in the upcoming issue of Nature Photonics.

  • Gravitationswellen als Sensor für Dunkle Materie

    Falls der Dunkle-Materie-Halo einer Galaxie aus einem Bose-Einstein-Kondensat (BEK) sehr leichter Teilchen besteht, werden durchgehende Gravitationswellen (GW), nicht aber Lichtwellen (γ) gebremst. Grafik: MPIK

    Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte. Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die experimentelle Suche konnte bisher nur Teilchenarten bzw. Energiebereiche ausschließen; gelegentliche Erfolgsmeldungen und Vermutungen ließen sich nicht verifizieren. Es sind aber noch längst nicht alle theoretischen Vorschläge überprüft.

  • HI4PI: A new all-sky survey of neutral hydrogen

    The entire sky in the light of neutral atomic hydrogen (HI) as seen by the Parkes and Effelsberg radio telescope with the Milky Way in the middle. HI4PI Collaboration

    Two of the world's largest fully steerable radio telescopes, the 100-m dish at Effelsberg/Germany and the 64-m Parkes/Australia telescope, mapped the detailed structure of neutral hydrogen across the Northern and Southern hemispheres. Today, the complete survey, HI4PI, is released to the scientific community. It discloses a wealth of fine details of the large scale structure of the Milky Way's gas distribution. HI4PI is the product of a joined effort of astronomers of many countries and will be a mile stone for the decades to come.

  • Home computers discover a record-breaking pulsar-neutron star system

    The Pulsar PSR J1913+1102 was found with the Einstein@Home project on the computers of two of the participants in this project, Uwe Tittmar from Germany and Gerald Schrader from the US. Max Planck Institute for Gravitational Physics/B. Knispel (photo), NASA (pulsar illustration).

    Almost 25,000 light years away, two dead stars orbit one another. Each more massive than our Sun, only 20 km in diameter, and less than five hours per orbit. This unusual pair was discovered by an international team of scientists – including researchers from two MPIs (Gravitational Physics and Radio Astronomy) – and by volunteers from the distributed computing project Einstein@Home. Only 14 similar binary systems are known so far, and the new one also is the most massive of those. Such systems enable some of the most precise tests of Einstein’s theory of general relativity. They also play an important role as potential gravitational-wave sources for the LIGO detectors. Neutron stars are the highly magnetized and extremely dense remnants of supernova explosions. Like a rapidly rotating cosmic lighthouse they emit beams of radio waves into space. If Earth happens to lie along one of the beams, large radio telescopes can detect the neutron star as a pulsating celestial source: a radio pulsar.

  • Kaiserslautern physicists observe diffusion of individual atoms in light bath

    First author Farina Kindermann and Professor Artur Widera in front of a quantum gas experi-mental setup for investigations on single atoms. University of Kaiserslautern/Thomas Koziel

    In a combination of experiments and theory the diffusion of individual atoms in periodic systems was understood for the first time. The interaction of individual atoms with light at ultralow temperatures close to the absolute zero temperature point provides new insights into ergodicity, the basic assumption of thermodynamics. Quantum physicists at University of Kaiserslautern have published their results together with colleagues in the renowned scientific journal “Nature Physics”.

  • Making spintronic neurons sing in unison

    Johan Åkerman. Photo: Johan Wingborg

    What do fire flies, Huygens’s wall clocks, and even the heart of choir singers, have in common? They can all synchronize their respective individual signals into one single unison tone or rhythm. Now researchers at University of Gothenburg have taught two different emerging classes of nano-scopic microwave signal oscillators, which can be used as future spintronic neurons, to sing in unison with their neighbours. Earlier this year, they announced the first successful synchronization of five so-called nano-contact spin torque oscillators. In that system, one of the nano-contacts played the role of the conductor, deciding which note to sing, and the other nano-contacts happily followed her lead.

  • Partnership at a distance: Deep-frozen helium molecules

    “When two loners are forced to share a bed, they move well beyond its edges to get away from each other.” Peter Evers

    As atomic physicists in Frankfurt have now been able to confirm, over 75 percent of the time helium atoms are so far apart that their bond can be explained only by the quantum-mechanical tunnel effect. Helium atoms are loners. Only if they are cooled down to an extremely low temperature do they form a very weakly bound molecule. In so doing, they can keep a tremendous distance from each other thanks to the quantum-mechanical tunnel effect. As atomic physicists in Frankfurt have now been able to confirm, over 75 percent of the time they are so far apart that their bond can be explained only by the quantum-mechanical tunnel effect.

  • Spiral arms: not just in galaxies

    Infrared image of the Rho Ophiuchi star formation region (left). The image on the right shows thermal dust emission from the protoplanetary disk surrounding the young star Elias 2-27. NASA/Spitzer/JPL-Caltech/WISE-Team (left image), B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO), L. Pérez (MPIfR) (right image).

    Astronomers have found a distinct structure involving spiral arms in the reservoir of gas and dust disk surrounding the young star Elias 2-27. While spiral features have been observed on the surfaces of protoplanetary disks, these new ALMA observations are the first to reveal that such spirals occur at the disk midplane, the region where planet formation takes place. This is of importance for planet formation: structures such as these could either indicate the presence of a newly formed planet, or else create the necessary conditions for a planet to form. As such, these results are a crucial step towards a better understanding how planetary systems like our Solar system came into being.