• Affordable detectors for gamma radiation

    single crystals made of lead halide perovskites Empa

    A research team at Empa and ETH Zurich has developed single crystals made of lead halide perovskites, which are able to gage radioactive radiation with high precision. Initial experiments have shown that these crystals, which can be manufactured from aqueous solutions or low-priced solvents, work just as well as conventional cadmium telluride semi-conductors, which are considerably more complicated to produce. The discovery could slash the price of many radio-detectors – such as in scanners in the security sector, portable dosimeters in power stations and measuring devices in medical diagnostics.

  • Hepatitis C and HIV prophylaxis: microwave reduces viral transmission in the drugs scene

    PD Dr. Eike Steinmann und Anindya Siddharta. TWINCORE/Romy Weller

    Infections with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) among people who inject drugs (PWID) are a global health problem. For example, sharing of drug preparation equipment within this population contributes to more than 80% of newly acquired HCV infections. As a response to these circumstances, scientists at TWINCORE validated a simple and safe method to reduce the risk of viral transmission, namely by microwave irradiation. This method has been published recently in Scientific Reports.

  • MPI and MIT researchers prove fast microbial evolutionary bursts exist

    Bacterial horizontal gene transfer.

    Remember all those different species of Galapagos finches? They stem from an evolutionary burst, through a process called adaptive radiation. Now a study published in Nature reveals that microbes can do the same.

  • The nanostructured cloak of invisibility

    Substrate with 450 nm nanopillars (left) compared to an unstructured reference (right). The top set of images were taken at an observation angle of 0°, the bottom set of images at 30°. © Zhaolu Diao

    Most lenses, objectives, eyeglass lenses, and lasers come with an anti-reflective coating. Unfortunately, this coating works optimally only within a narrow wavelength range. Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart have now introduced an alternative technology. Instead of coating a surface, they manipulate the surface itself. By comparison with conventional procedures, this provides the desired anti-reflective effect across a wider wavelength range. But more than this, it largely increases the light transmittance through surfaces.