Biosensors

A biosensor is an analytical device, used for the detection of an analyte, that combines a biological component with a physicochemical detector. The sensitive biological element (e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc.) is a biologically derived material or biomimetic component that interacts (binds or recognizes) with the analyte under study.

The biosensor reader device with the associated electronics or signal processors that are primarily responsible for the display of the results in a user-friendly way.

  • Biosensor measures signaling molecules within cilia

    Scientists of the Research Center caesar in Bonn, an Institute of the Max Planck Society, developed a new biosensor, which allows to measure nanomolar levels of the second messenger cAMP. The sensor makes it possible to study cAMP signaling with high precision, even in subcellular compartments. Using this new biosensor, the scientists of the Minerva Max Planck Research Group “Molecular Physiology“ headed by Dagmar Wachten and of the Department “Molecular Sensory Systems” headed by Benjamin Kaupp revealed how the production of cAMP is regulated in the flagella of sperm cells from mice.

  • Effect of humidity on graphene sensors demistified

    Humidity effect on graphene doping.

    Graphene produced with chemical vapor deposition (CVD) will form the cornerstone of future graphene-based chemical, biological, and other types of sensors. Graphene, however, is extremely sensitive to air, in particular to humidity. To avoid unwanted background coming from humidity and to calibrate future sensors, it is highly important to investigate the mechanisms by which water (in the form of environmental humidity) affects graphene sheets.

  • Personalized antibiotic treatment

    The electrochemical biosensor system for point-of-care testing. Photo: Andreas Weltin

    Researchers from Freiburg have developed a sensor platform that quantifies antibiotics in human blood within minutes. A team of researchers from the University of Freiburg has developed a system inspired by biology that can detect several different antibiotics in human blood or other fluids at the same time. This biosensor system could be used for medical diagnostics in the future, especially for point-of-care testing in doctors’ practices, on house calls and in pharmacies, as well as in environmental and food safety testing. The researchers focused their study on the antibiotics tetracycline and streptogramin in human blood.