Bacteria

  • A new study shows how dangerous germs travel as stowaways from one continent to another

    Using a special culture, germs from smears can be recognized and identified. Photo: WWU/H. Dornhege

    As scientists from Münster University, in collaboration with the Robert Koch Institute in Berlin, have now demonstrated, toilets at airports are also a “transfer point” for germs. These include germs against which traditional antibiotics for the treatment of bacterial infections are not, or only partially, effective.
    Münster (mfm/sm) – Everyday life at an airport: there’s still time before the jet taking passengers to faraway countries takes off – time enough for a quick visit to the toilet. What awaits passengers there is not always a pleasant sight. However, what they don’t see can be much worse. As scientists from Münster University, in collaboration with the Robert Koch Institute in Berlin, have now demonstrated, toilets at airports are also a “transfer point” for germs.

  • Bacteria supply their allies with munitions

    Vibrio cholerae bacteria (green) recycle T6SS proteins of the attacking sister cells (red) to build their own spear gun (light green intracellular structure). (Image: University of Basel, Biozentrum)

    Bacteria fight their competitors with molecular spear guns, the so-called Type VI secretion system. When firing this weapon they also unintentionally hit their own kind. However, as researchers from the University of Basel’s Biozentrum report in the journal Cell, the related bacteria strains benefit from coming under fire. They recycle the protein components of the spear guns and use these to build their own weapons.

  • Bacterial Pac Man molecule snaps at sugar

    The P domain (yellow) patrols with its mouth open until it encounters a sialic acid molecule (purple). This movement was analyzed with distance measurements using the spin markers shown in blue.  © Dr. Gregor Hagelüken/Uni Bonn

    Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

  • Bakterien aus dem Blut «ziehen»

    Bakterien können mit magnetischer Blutreinigung entfernt werden (links). Eine Lösung mit magnetischen Eisenpartikeln (oben rechts), kann mitt einem Magneten "gereinigt" werden (unten rechts). Empa

    Magnete statt Antibiotika, das könnte eine mögliche neue Behandlungsmethode bei Blutvergiftungen sein. Dazu wird das Blut der Patienten mit magnetischen Eisenpartikeln versetzt, die die Bakterien an sich binden, ehe sie durch Magnete aus dem Blut entfernt werden. Erste Laborversuche sind an der Empa in St. Gallen gelungen – und erfolgversprechend. Blutvergiftungen enden auch heutzutage noch in über 50% der Fälle tödlich, lassen sich aber im Anfangsstadium durchaus kurieren. Daher ist oberstes Gebot, schnell zu handeln. Aus diesem Grund verabreichen Ärzte meist schon bei einem Verdacht auf Blutvergiftung Antibiotika, ohne vorher abzuklären, ob es sich tatsächlich um eine bakterielle Sepsis handelt, was wiederum die Gefahr für Resistenzen massiv erhöht. Es gilt also, eine schnelle und effektive Therapie zu finden, möglichst ohne auf Antibiotika zurückgreifen zu müssen.

  • Big data processing enables worldwide bacterial analysis

    S. Aureus colonies © Nanobay

    Sequencing data from biological samples such as the skin, intestinal tissues, or soil and water are usually archived in public databases. This allows researchers from all over the globe to access them. However, this has led to the creation of extremely large quantities of data. To be able to explore all these data, new evaluation methods are necessary. Scientists at the Technical University of Munich (TUM) have developed a bioinformatics tool which allows to search all bacterial sequences in databases in just a few mouse clicks and find similarities or check whether a particular sequence exists.

  • Constricting without a string: Bacteria gone to the worms divide differently

    The rod-shaped bacteria densely populating the surface of the worm belong to the Gammaproteobacteria. These comprise members of our gut microbiome but also some serious pathogens. Nikolaus Leisch

    A new study provides fascinating insights into how bacteria divide. This shows not only how little we know about bacteria outside of the lab, but might also bring us one step closer towards the development of new antibiotics.

  • Dissecting bacterial infections at the single-cell level

    Left: a macrophage (nucleus in blue) infected with a non-replicating bacteria in yellow indicated by an arrow and on the right infected with bacteria that has replicated (red). (Picture: Antoine-Emmanuel Saliba)

    Technological advances are making the analysis of single bacterial infected human cells feasible, Würzburg researchers have used this technology to provide new insight into the Salmonella infection process. The study has just been published in “Nature Microbiology”. Infectious diseases are a leading cause of mortality worldwide. The development of novel therapies or vaccines requires improved understanding of how viruses, pathogenic fungi or bacteria cause illnesses.

  • Ectoine reduces chronic lung inflammation: A new therapeutic approach against COPD

    Illustration depicting bronchoconstriction

    Researchers at the IUF – Leibniz Research Institute for Environmental Medicine demonstrate for the first time the efficacy of the natural compound ectoine against chronic lung inflammation in an inhalation study with female volunteers from the industrial Ruhr region. Chronic obstructive pulmonary disease (COPD), according to world health organization (WHO), is currently the third leading cause of death.

  • Faster diagnosis of sepsis pathogens

    High-throughput sequencing of sepsis pathogens at Fraunhofer IGB. Fraunhofer IGB

    Microbial pathogens can be diagnosed unambiguously and within just 24 hours by means of high-throughput sequencing of their genetic makeup and special bioinformatics evaluation algorithms. Fraunhofer researchers have validated this in a clinical study with sepsis patients. The researchers present the NGS diagnosis platform at Medica in Düsseldorf from November 14–17, 2016. It is estimated that in Germany alone around 150,000 people fall ill with sepsis every year; despite medical advances, between 30 and 50 percent of the patients still die of the consequences. One of the reasons for the high mortality rate: the diagnosis often comes too late for the lifesaving therapy with antibiotics that only combat the specific causative pathogen.

  • High-speed camera snaps bio-switch in action

    The riboswitch 'button' before, during and after coupling of the ligand (green), from left to right. Credit: Yun-Xing Wang and Jason Stagno, National Cancer Institute

    X-ray experiment opens new route to study biochemical reactions. With a powerful X-ray camera, scientists have watched a genetic switch at work for the first time. The study led by Yun-Xing Wang from the National Cancer Institute of the U.S. reveals the ultrafast dynamics of a riboswitch, a gene regulator that can switch individual genes on and off. The innovative technique used for this investigation opens up a completely new avenue for studying numerous fundamental biochemical reactions, as the team reports in a fast-track publication in the journal Nature.

  • How cells take out the trash: the “phospho-kiss of death” deciphered

    Phosphoarginine functions as a protein degradation tag in Gram-positive bacteria IMP

    Cells never forget to take out the trash. It has long been known that cells tag proteins for degradation by labelling them with ubiquitin, a signal described as “the molecular kiss of death”. In the current issue of Nature, Tim Clausen’s group at the Research Institute of Molecular Pathology (IMP) in Vienna identifies an analogous system in gram-positive bacteria, where the role of a degradation tag is fulfilled by a little known post-translational modification: arginine phosphorylation. The discovery opens new avenues for designing antibacterial therapies.

  • Immune system reactions elucidated by mathematics

    Bacteria of the species Streptococcus pneumoniae colonising an endothelial cell. HZI/M. Rohde

    Using computer-based simulations and mouse experiments, HZI researchers disentangled the effects of proinflammatory signaling molecules on the post-influenza susceptibility to pneumococcal coinfection. A body infected by the influenza virus is particularly susceptible to other pathogens. Bacteria like Streptococcus pneumoniae, i.e. the pathogen causing pneumonia, find it easy to attack an influenza-modulated immune system and to spread widely. This can even be fatal in some cases. The reasons for the bacterial growth in the presence of a coinfection by influenza virus and bacteria is still debatable.

  • Körpereigene Nanopartikel als Transporter für Antibiotika

    Dr. Gregor Fuhrmann vom Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS). G. Fuhrmann

    Neue BMBF-Nachwuchsgruppe um Gregor Fuhrmann erforscht, wie Medikamente gezielt zu Krankheitserregern im Körper geschleust werden können. Bakterien entwickeln zunehmend Resistenzen gegen die gängig eingesetzten Antibiotika – unter anderem als Folge der übermäßigen und zum Teil falschen Anwendung der Medikamente. Zudem haben Antibiotika häufig unangenehme Nebenwirkungen, da sie auch nützliche Bakterien abtöten. Der Pharmazeut Dr. Gregor Fuhrmann, Wissenschaftler am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), möchte eine Technologie entwickeln, mit der Antibiotika im Körper gezielt zu den krankmachenden Bakterien transportiert werden.

  • Microbe hunters discover long-sought-after iron-munching microbe

    One of the bioreactors, in which he and his colleagues found the rust-munching microbes. Boran Kartal

    A microbe that ‘eats’ both methane and iron: microbiologists have long suspected its existence, but were not able to find it - until now. Researchers at Radboud University and the Max Planck Institute for Marine Microbiology in Bremen discovered a microorganism that couples the reduction of iron to methane oxidation, and could thus be relevant in controlling greenhouse gas emissions worldwide.

  • Multiple Sklerose: Neu entdeckter Signalmechanismus macht T-Zellen pathogen

    Die dendritische Zelle und die T-Zelle bei der Clusterbildung (rechts im Bild); Prof. Dr. Thomas Korn (Technische Universität München)

    Folgenschwere Instruktionen: T-Zellen sind ein wichtiger Teil des Immunsystems. Sie können aber nicht nur Krankheitserreger ausschalten, sondern auch selbst zu einer Gefahr werden. Forscherinnen und Forscher der Technischen Universität München (TUM) und der Universitätsmedizin Mainz haben herausgefunden, wann bestimmte T-Zellen zu krankheitserregenden T-Zellen werden, die mit Multipler Sklerose in Verbindung gebracht werden. Die Ergebnisse erklären, warum bestimmte Behandlungsansätze nicht zuverlässig wirken. Sie sind in der aktuellen Ausgabe von „nature immunology“ veröffentlicht.

  • Nanofarbriken zum Schutz vor bakterieller Besiedlung

    Prof. Dr. Sebastian Polarz.

    Forschungspreis der Dr. Karl Helmut Eberle-Stiftung vergibt 300.000 Euro Fördermittel an der Universität Konstanz für das Jahr 2016. Die Dr. Karl Helmut Eberle-Stiftung vergibt erstmals ihren Preis für herausragende wissenschaftliche Vorhaben an Wissenschaftlerinnen und Wissenschaftler der Universität Konstanz. Die im Jahr 2016 mit 300.000 Euro dotierte Auszeichnung erhalten der Chemiker Prof. Dr. Sebastian Polarz und der Biologe PD Dr. David Schleheck für ein gemeinsames interdisziplinäres Projekt zum Schutz vor bakterieller Besiedelung auf Oberflächen. Dazu werden sie sogenannte Nanofabriken entwickeln.

  • New chemistry of life

    Lung tissue during legionellosis.

    FRANKFURT. The attachment of ubiquitin was long considered as giving the „kiss of death“, labelling superfluous proteins for disposal within a cell. However, by now it has been well established that ubiquitin fulfils numerous additional duties in cellular signal transduction. A team of scientists under the lead of Ivan Dikic, Director of the Institute of Biochemistry II at Goethe University Frankfurt, has now discovered a novel mechanism of ubiquitination, by which Legionella bacteria can seize control over their host cells. Legionella causes deadly pneumonia in immunocompromised patients. A novel ubiquitination mechanism explains pathogenic effects of Legionella infection. First results hint towards a broader role in regulating many life processes.

  • New procedure for producing safe and more effective vaccines

    Foto Fraunhofer FEP

    A consortium of four Fraunhofer Institutes (the Fraunhofer Institute for Cell Therapy and Immunology IZI, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, and the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB) is developing a way of inactivating viruses and other pathogens based on low energy electron irradiation. This may aid the manufacture of more effective, safe and also more cost-effective vaccines.

  • Newly discovered bacteria-binding protein in the intestine

    Joakim Bergström Photo: Cecilia Hedström

    Deficiency in a certain protein in the gastrointestinal tract has been shown to lead to both inflammation and abdominal fat accumulation in mice. The discovery provides yet another piece of the puzzle of how humans are affected — or not — by the large quantities of intestinal bacteria we carry with us. In the study from Sahlgrenska Academy, researchers have addressed the key role of the bacteria-binding protein ZG16 in protecting the body from intestinal bacteria. “The hope is that eventually, we’ll be able to administer this protein to improve protection against bacteria in patients with a defective barrier,” says Joakim Bergström, postdoctoral researcher at Sahlgrenska Academy. Joakim Bergström is in Professor Gunnar C. Hansson’s research group, which, eight years ago, was first to discover that there is a protective mucus layer in the intestine that separates intestinal bacteria from the intestinal surface.

  • Optical tractor beam traps bacteria

    Picture of the distribution of the genetic information in an Escherichia coli bacterial cell. Photo: Bielefeld University

    Physicists from Bielefeld University report on new methods in ‘Nature Communications’

    Up to now, if scientists wanted to study blood cells, algae, or bacteria under the microscope, they had to mount these cells on a substrate such as a glass slide. Physicists at Bielefeld and Frankfurt Universities have developed a method that traps biological cells with a laser beam enabling them to study them at very high resolutions.