• Das MPQ päsentiert den Original-Laser

    Prof. Theodore Maiman (Foto: K. Maiman)

    Im Jahr 1960 begann eine neue Ära der Technologiegeschichte. Theodore Maiman stellte den ers-ten funktionierenden Laser der Öffentlichkeit vor. Ein kleines Gerät bestehend aus einer Blitzlampe, einem Rubinkristall und einer Hülse aus Metall. Maimans erster Laser hat die Jahrzehnte überdauert. Jetzt ist das Original im Foyer des Max-Planck Instituts für Quantenoptik (MPQ) in Garching b. München in einer kleinen Ausstellung zu sehen. Zusammen mit dem Laser präsentiert das MPQ das Original-Laborbuch von Theodore Maiman mit seinen bahnbrechenden Skizzen des Geräts. Die Ausstellung ist ab dem 12. Dezember 2016 kostenlos zu besichtigen am Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str.1, 85748 Garching; täglich von 9 bis 17 Uhr. Journalisten sind herzlich zur Ausstellungseröffnung am 12. Dezember 2016 um 15 Uhr im Foyer des MPQ eingeladen.

  • First quantum photonic circuit with electrically driven light source

    Graphic representation of part of a chip, showing with photon source, detector and waveguides Illustration: Münster University/Wolfram Pernice

    Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

  • Humboldt Fellowship for research on tunable optical surfaces for Terahertz technology

    Dr. Corey Shemelya. Thomas Koziel/TU Kaiserslautern

    U.S. scientist Dr. Corey Shemelya has recently started a research stay at the University of Kaiserslautern in the form of a fellowship granted by the Alexander von Humboldt Foundation. Dr. Shemelya is studying structured optical surfaces which hold potential applications in communication technology and Terahertz imaging, e.g. body scanning equipment for airport safety. Shemelya is working in conjunction with the Terahertz Technology Laboratory of Professor Marco Rahm at the Department of Electrical and Computer Engineering and the State Research Center for Optical and Material Sciences (OPTIMAS).

  • InLight study: insights into chemical processes using light

    “Throwing light into the process”: Determination of chemical parameters by optical measurement through a vessel wall. Fraunhofer ILT, Aachen, Germany.

    Optical process analytics – this fast and non-contact method of measuring chemical and physical parameters provides high-density information without the need to take samples. What’s more, it can be shrunk to a far smaller size and is easy to integrate into existing process lines. From its location in Aachen, Germany, the Fraunhofer Institute for Laser Technology led a consortium to analyze the future potential of this technique in cooperation with BAM and RWTH Aachen University. The purpose of the study, entitled “Inline process analytics with light – InLight” was to develop a technology roadmap and a detailed white paper that will be presented to a wider public in early 2017.

  • Matter-antimatter symmetry confirmed with precision record

    Sketch of the experimental setup used at CERN for the determination of the antiproton-to-electron mass ratio. Graphic: Masaki Hori

    CERN experiment sets precision record in the measurement of the antiproton to electron mass ratio using a new innovative cooling technique. According to the Standard Model of elementary particle physics, to each particle exists an antiparticle that is supposed to behave exactly the same way. Thus, “anti-people” in an “anti-world” would observe the same laws of physics, or make the same experiences in general, as we do. This postulate is, however, difficult to prove, since it is almost impossible to perform measurements on antimatter: whenever an antiparticle meets is matter-counterpart, both particles annihilate, accompanied by the creation of energy.

  • Nanodiscs: kleine Scheiben ganz groß

    Schematische Darstellung der Extraktion von Membranproteinen aus einer biologischen Membran (oben) unter Bildung von Nanodiscs (unten).

    Biophysiker, Biologen und Chemiker der Technischen Universität Kaiserslautern haben eine neue Art von Polymer/Lipid-Nanopartikeln entwickelt, mit denen Membranproteine im Reagenzglas und dennoch unter fast natürlichen Bedingungen untersucht werden können. Membranproteine spielen viele essenzielle Rollen beim Stoff- und Informationsaustausch zwischen und innerhalb von Zellen. Fehlfunktionen dieser wichtigen Klasse von Biomolekülen führen oft zu schweren Krankheiten, weshalb Membranproteine sowohl in der Grundlagen- als auch in der Wirkstoffforschung intensiv erforscht werden. Eine große Hürde für in-vitro-Untersuchungen - also Studien im Reagenzglas unter genau kontrollierten Bedingungen - sind dabei die hohen Anforderungen, die Membranproteine an ihre Umgebung stellen. Da diese Moleküle sich in Wasser und ähnlichen polaren Flüssigkeiten nicht lösen lassen, sind Forscherinnen und Forscher auf sogenannte „membranmimetische“ Systeme angewiesen, die die natürliche Lipidumgebung mit einer wasserabweisenden Schicht zwischen zwei wasserzugänglichen Grenzflächen möglichst gut nachbilden.

  • Neues Graduiertenkolleg der TU Ilmenau entwickelt Verfahren zur Produktion im Nanometerbereich

    Reinraum an der TU Ilmenau. Foto: TU Imenau

    Die Deutsche Forschungsgemeinschaft hat der Technischen Universität Ilmenau die Einrichtung des Graduiertenkollegs „Spitzen- und laserbasierte 3D-Nanofabrikation in ausgedehnten makroskopischen Arbeitsbereichen (NanoFab)“ bewilligt und fördert es mit 5,2 Millionen Euro für viereinhalb Jahre. Graduiertenkollegs sind unter Universitäten sehr begehrt, denn die Förderung ermöglicht ihnen hochspezialisierte Spitzenforschung und eröffnet gleichzeitig jungen Wissenschaftlern die Möglichkeit, einen Doktorgrad zu erlangen.

  • Optical tractor beam traps bacteria

    Picture of the distribution of the genetic information in an Escherichia coli bacterial cell. Photo: Bielefeld University

    Physicists from Bielefeld University report on new methods in ‘Nature Communications’

    Up to now, if scientists wanted to study blood cells, algae, or bacteria under the microscope, they had to mount these cells on a substrate such as a glass slide. Physicists at Bielefeld and Frankfurt Universities have developed a method that traps biological cells with a laser beam enabling them to study them at very high resolutions.

  • Porous crystalline materials: TU Graz researcher shows method for controlled growth

    Porous cystalls called MOFs on a comparatively large surface area of one square centimetre. © Nature Materials 2016 Falcaro et.al.

    Microporous crystals (MOFs) have a great potential as functional materials of the future. Paolo Falcaro of TU Graz et al demonstrate in Nature Materials how the growth of MOFs can be precisely controlled on a large scale. Porous crystals called metal-organic frameworks (MOFs) consist of metallic intersections with organic molecules as connecting elements. Thanks to their high porosity, MOFs have an extremely large surface area. A teaspoonful of MOFs has the same surface area as a football pitch. These countless pores situated in an extremely small space offer room for “guests” and can, for example, be used for gas storage or as “molecular gate” for separation of chemicals.

  • Quantum Particles Form Droplets

    Quantum droplets may preserve their form in absence of external confinement because of quantum effects. IQOQI/Harald Ritsch

    In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

  • Scientists shrink electron gun to matchbox size

    A miniature electron gun driven by Terahertz radiation: An ultraviolett pulse (blue) back-illuminates the gun photocathode, producing a high density electron bunch inside the gun. The bunch is immediately accelerated by ultra-intense single cycle Terahertz pulses to energies approaching one kilo-electronvolt (keV). These high-field optically-driven electron guns can be utilized for ultrafast electron diffraction or injected into the accelerators for X-ray light sources. Credit: W. Ronny Huang, CFEL/DESY/MIT

    Terahertz technology has the potential to enable new applications.In a multi-national effort, an interdisciplinary team of researchers from DESY and the Massachusetts Institute of Technology (MIT) has built a new kind of electron gun that is just about the size of a matchbox. Electron guns are used in science to generate high-quality beams of electrons for the investigation of various materials, from biomolecules to superconductors. They are also the electron source for linear particle accelerators driving X-ray free-electron lasers.

  • Significantly more productivity in USP lasers

    With the hybrid systems composed of freely programmable multi-beam optics and galvo scanners, a laser beam can be split into any number of beamlets. © Fraunhofer ILT, Aachen, Germany / Volker Lannert.

    In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

  • The nanostructured cloak of invisibility

    Substrate with 450 nm nanopillars (left) compared to an unstructured reference (right). The top set of images were taken at an observation angle of 0°, the bottom set of images at 30°. © Zhaolu Diao

    Most lenses, objectives, eyeglass lenses, and lasers come with an anti-reflective coating. Unfortunately, this coating works optimally only within a narrow wavelength range. Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart have now introduced an alternative technology. Instead of coating a surface, they manipulate the surface itself. By comparison with conventional procedures, this provides the desired anti-reflective effect across a wider wavelength range. But more than this, it largely increases the light transmittance through surfaces.

  • Ultrashort and Extremely Precise

    Innsbruck physicists observe a surprising quantum effect when short light pulses interact with matter. Patrick Maurer

    A group of theoretical physicists headed by Oriol Romero-Isart from the Institute for Quantum Optics and Quantum Information and the University of Innsbruck observes a surprising quantum effect when short light pulses interact with matter. In the future, this effect may be used for developing a completely new type of far-field light nanoscopes.