Medical Implant Technology

  • 3D printing to repair damage in the human body

    Dr. Ivan Minev in front of his 3D printer © BIOTEC

    Freigeist Fellowship supports Dr. Ivan Minev in using 3D printing to find ways to repair damage in the human body.
    Dr. Ivan Minev, research group leader at the BIOTEC/CRTD, has been awarded a Freigeist Fellowship from the VolkswagenStiftung. This five-year, 920.000 EUR grant will enable him to establish his own research team. The ‘Freigeist’ initiative is directed toward enthusiastic scientists and scholars with an outstanding record that are given the opportunity to enjoy maximum freedom in their early scientific career.

  • Bioabbaubare Polymer-Beschichtung für Implantate

    Im mikroskopischen Fluoreszenzbild lassen sich die Strukturen aus Molekülen erkennen, die zu Testzwecken auf die bioabbaubare Beschichtung gedruckt wurden. Im mikroskopischen Fluoreszenzbild lassen sich die Strukturen aus Molekülen erkennen, die zu Testzwecken auf die bioabbaubare Beschichtung gedruckt wurden.  Bild: KIT

    Medizinische Implantate tragen oft Oberflächensubstrate, die Wirkstoffe abgeben oder auf denen Biomoleküle sowie Zellen besser haften können. Allerdings gab es bislang keine abbaubaren Gasphasenbeschichtungen für abbaubare Implantate wie chirurgische Nahtmaterialien oder Gerüste für die Gewebezucht. Eine Polymerbeschichtung, die im Körper wie ihr Träger abgebaut wird, stellen nun Forscher des Karlsruher Instituts für Technologie in der Fachzeitschrift Angewandte Chemie vor. „Unsere neuen abbaubaren Polymerfilme könnten breite Anwendung für die Funktionalisierung und Beschichtung von Oberflächen finden, in den Biowissenschaften über die Medizin bis hin zur Lebensmittelverpackung“, so Professor Joerg Lahann, Co-Direktor des Instituts für Funktionelle Grenzflächen am Karlsruher Institut für Technologie. Gemeinsam in einem internationalen Team stellte er Polymerfilme her, die mit funktionellen Seitengruppen als „Verankerungspunkte“ für Moleküle ausgestattet waren, an die sie Fluoreszenzfarbstoffe und Biomoleküle andocken ließen.

  • Biodegradable composites: a significant advance in medical implant technology

    • Evonik is conducting research on new composite materials for the fixation of fractured bones
    • Bioresorbable polymers degrade naturally in the body, eliminating the need for additional surgery
    • Medical implant technology is an attractive and growing market

  • COMPAMED 2016 connected medical devices and people

    Materialise NV from Belgium speaking on “Innovation in 3D Printed Wearables” at COMPAMED HIGH-TECH Forum 2016. IVAM

    Miniaturized connected systems and outstanding business contacts: forming networks on both technical and business level was one of the key features of COMPAMED 2016, the international trade fair for suppliers and manufacturers of medical technologies. This trend was visible at and enhanced by the joint trade fair booth of the IVAM Microtechnology Network in hall 8a, the accompanying presentation forum and numerous B2B meetings between companies from Germany and Japan.

  • Mikrosensor hilft herzkranken Menschen

    Patient Mike Bartsch und DHZB-Kardiologe Dr. Felix Schönrath DHZB

    Am Deutschen Herzzentrum Berlin wird ein neuartiges Implantat eingesetzt, das direkt am Herzen den Blutdruck misst und drahtlos überträgt. Es ermöglicht den Ärzten eine bessere Überwachung von Patienten mit schwerer Herzschwäche.

  • New Products - Highlights of COMPAMED 2016

    NanEye - The award winning, smallest digital camera in the world, for disposable endoscope. CMOSIS Germany GmbH

    COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

  • Physik fürs „Leben“ : Innovationen in Medizin und Life Sciences - Deutsche Physikalische Gesellschaft schlägt Brücke zwischen Wissenschaft und Wirtschaft

    Deutsche Physikalische Gesellschaft

    „The real challenge in innovation is not invention – coming up with good ideas – but in making them work technically and commercially.” (T.A. Edison). Unter diesem Motto fand die DPG- Arbeitstagung Forschung – Entwicklung – Innovation XLI vom 6. November 2016 bis zum 8. November im Physikzentrum Bad Honnef statt. Das Schwerpunktthema in diesem Jahr lautete Physik fürs „Leben“ –Innovationen in Medizin und Life Sciences.

  • Termination of lethal arrhythmia with light

    A: Optogenetic defibrillation (blue bar) stops arrhythmia in mouse heart. B: Simulation of optogenetic defibrillation (red bar) in a model of a human heart.   © Image: Tobias Brügmann (University Bonn)/Patrick M. Boyle (Johns Hopkins University)

    A research team from the University of Bonn has succeeded for the first time in using light stimuli to stop life-threatening cardiac arrhythmia in mouse hearts. Furthermore, as shown in computer simulations at Johns Hopkins University, this technique could also be used successfully for human hearts. The study opens up a whole new approach to the development of implantable optical defibrillators, in which the strong electrical impulses of conventional defibrillators are replaced by gentler, pain-free light impulses. The "Journal of Clinical Investigation" has now published the results.

  • Wie Materialoberflächen Zellgemeinschaften steuern

    Wie Materialoberflächen Zellgemeinschaften steuern picture 2 | Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren. Foto: Jan-Peter Kasper/FSU

    Von der Natur inspiriert: Materialwissenschaftler der Uni Jena nutzen strukturierte Oberflächen, um medizinische Implantate sicherer zu machen