3D Printing

3D printing, also known as additive manufacturing (AM), refers to various processes used to synthesize a three-dimensional object. In 3D printing, successive layers of material are formed under computer control to create an object. These objects can be of almost any shape or geometry and are produced from a 3D model or other electronic data source.

  • 3D printed optical lenses, hardly larger than a human hair

    3D printed optical lenses hardly larger than a human hair | Complex 3D printed objective on an optical fiber in a syringe. University of Stuttgart/ 4th Physics Institute

    3D printing enables the smallest complex micro-objectives

    3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines are written sequentially, even the most complex devices could be realized fast and easy. This method is now also available for optical elements. Researchers at University of Stuttgart in Germany have used an ultrashort laser pulses in combination with optical photoresist to create optical lenses which are hardly larger than a human hair.

  • 3D printing to repair damage in the human body

    Dr. Ivan Minev in front of his 3D printer © BIOTEC

    Freigeist Fellowship supports Dr. Ivan Minev in using 3D printing to find ways to repair damage in the human body.
    Dr. Ivan Minev, research group leader at the BIOTEC/CRTD, has been awarded a Freigeist Fellowship from the VolkswagenStiftung. This five-year, 920.000 EUR grant will enable him to establish his own research team. The ‘Freigeist’ initiative is directed toward enthusiastic scientists and scholars with an outstanding record that are given the opportunity to enjoy maximum freedom in their early scientific career.

  • Aachen – The 3D Valley

    Additive manufacturing of metal or plastic components is the focus of the 3D Valley Conference on September 14 and 15, 2016 in Aachen. © Fraunhofer ILT, Aachen, Germany.

    Major players in the aerospace and automotive sectors are modifying 3D printing processes for use in large-scale production, while small and medium-sized companies also increasingly recognize the technology’s huge potential. However, the costs and know-how associated with 3D printing still represent major obstacles to its introduction. Now researchers and manufacturers have joined forces in Aachen to offer users customized solutions.

  • Complex hardmetal tools out of the 3D printer

    Wire die with integrated cooling duct in the raw state after sintering: at Fraunhofer IKTS in Dresden, hardmetal components are developed according to customer requirements via 3D binder jetting.

    For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

  • Fire and Flame for New Surfaces

    A flame treatment facility in operation. esse CI

    The printing, coating and bonding of plastics requires the surface to be pre-treated. Flame treatment is one way to achieve this so-called activation. It is currently being used in many industrial sectors and has considerable potential for development. The Fraunhofer Institute for Applied Polymer Research IAP in Potsdam and the Italian company esse CI are uniting their expertise in surface chemistry and machine engineering in order to clearly expand the opportunities provided by flame treatment and to extend the range of surface properties. Interested companies can take part in the development of this technology and help advance its industrialization.

  • formnext 2016: low-cost SLM unit with production costs below 20,000 euros

    Picture 1: Debut at formnext 2016: the new, low-cost SLM unit for 3D printing of stainless steel components is particularly suitable for entry-level users. © Fraunhofer ILT, Aachen, Germany.

    FH Aachen and the Fraunhofer Institute for Laser Technology ILT are to present a new, low-cost SLM unit for the first time at formnext in Frankfurt am Main from November 15-18, 2016. Developed jointly with the GoetheLab at FH Aachen, the unit is intended primarily for small and medium-sized enterprises for whom expensive selective laser melting technology is not yet economically viable because of the high level of investment required.

  • Humboldt Fellowship for research on tunable optical surfaces for Terahertz technology

    Dr. Corey Shemelya. Thomas Koziel/TU Kaiserslautern

    U.S. scientist Dr. Corey Shemelya has recently started a research stay at the University of Kaiserslautern in the form of a fellowship granted by the Alexander von Humboldt Foundation. Dr. Shemelya is studying structured optical surfaces which hold potential applications in communication technology and Terahertz imaging, e.g. body scanning equipment for airport safety. Shemelya is working in conjunction with the Terahertz Technology Laboratory of Professor Marco Rahm at the Department of Electrical and Computer Engineering and the State Research Center for Optical and Material Sciences (OPTIMAS).

  • Laser-additive manufacturing paves the way to Industry 4.0

    Additive manufacturing at the micro scale using Selective Laser Melting. LZH

    On November 09th, 2016, already for the third time, the Laser Zentrum Hannover e.V. (LZH) and NiedersachsenMetall invited small and medium-sized enterprises (SMEs) to attend the Innovation Day Laser Technology at LZH. About 100 guests informed themselves about the state-of-the-art as well as the application and market potential of the focus topic “Laser Additive Manufacturing”. „Are we ready for implementing Industry 4.0?“, asked Dr. Volker Schmidt, CEO of NiedersachsenMetall and Chairman of the Industrial Board of the LZH, the audience at the beginning. With regard to the innovation potentials and new markets, he emphasized the high importance of digitalization. “What is the future of work in the age of digitalization?”, opened Ingelore Hering from the Lower Saxony Ministry for Economics, Labour and Transport her welcome speech with a question, too. “Only all stakeholders together can find sustainable answers to this challenge. For example here today.”

  • Leichtbauteile aus dem 3D-Drucker

    Bauteile aus faserverstärkten Kunststoffen (FVK) werden in der Industrie immer beliebter. Allerdings ist die Herstellung und Reparatur der Werkstücke teuer und aufwendig. Unter Leitung der Fraunhofer-Projektgruppe Regenerative Produktion entwickelt das Netzwerk »3D Composite Print (3D-CP)« neue Lösungen mit generativer Fertigung. Vertreter aus Forschung und Industrie können noch beitreten und beim nächsten Treffen am 7. April in Heilsbronn teilnehmen.

  • Manufacturing Live Tissue with a 3D Printer

    Among the 300 finalist teams this year there were twelve from Germany, including this joint team from TUM and LMU of Munich. (Photo: TUM/ A. Heddergott)

    At the international iGEM academic competition in the field of synthetic biology, the joint team of students from the Technical University of Munich (TUM) and the Ludwig Maximilian University of Munich (LMU) won the first rank (Grand Prize) in the “Overgraduate” category. The team from Munich developed an innovative process which allows intact tissue to be built with the use of a 3D printer.

  • Maßgeschneiderte Spitzen für Rasterkraftmikroskope dank Nano-3D-Druck

    Maßgeschneiderte Spitzen für Rasterkraftmikroskope dank Nano 3D Druck picture2 | Optimal an spezielle Anforderungen angepasste Sondenspitzen für Rasterkraftmikroskope können nun am KIT mittels Nano-3D-Druck hergestellt werden. Aufnahme: KIT

    Rasterkraftmikroskope machen die Nanostruktur von Oberflächen sichtbar. Ihre Sonden tasten das Untersuchungsmaterial dazu mit feinsten Messnadeln ab. Am KIT ist es nun gelungen, den Messnadeln eine maßgeschneiderte Form zu geben. So kann eine passende Messspitze für jede Messaufgabe hergestellt werden, etwa für verschiedenartige biologische Proben. Möglich macht dies die 3D-Laserlithografie, also ein 3D-Drucker für Strukturen in Nanometer-Größe. Die Fachpublikation Applied Physics Letters widmet diesem Erfolg nun ihre Titelseite. DOI: 10.1063/1.4960386

  • Mini-Bauteile mit Laserpinzette zusammensetzen

    Ingenieure um Prof. Dr. Cemal Esen vom Lehrstuhl für Laseranwendungstechnik der Ruhr-Universität Bochum entwickeln winzige Bauteile, die sie mithilfe einer Laserpinzette zu größeren Objekten zusammenfügen können. Sie etablieren dabei Methoden, mit denen sich eines Tages Maschinen fertigen lassen könnten, die gerade einmal ein paar Mikrometer groß sind. Verschiedene Verbindungstechniken testete die Gruppe bereits erfolgreich. Derzeit experimentieren die Forscher mit dotierten Materialien, mit denen sie Objekte zum Beispiel magnetisch oder elektrisch leitend machen können.

  • Nanostructures Made of Pure Gold

    Nanostructure made of gold.

    It is the Philosopher’s Stone of Nanotechnology: using a technological trick, scientists at TU Wien (Vienna) have succeeded in creating nanostructures made of pure gold.The idea is reminiscent of the ancient alchemists’ attempts to create gold from worthless substances: Researchers from TU Wien (Vienna) have discovered a novel way to fabricate pure gold nanostructures using an additive direct-write lithography technique. An electron beam is used to turn an auriferous organic compound into pure gold. This new technique can now be used to create nanostructures, which are needed for many applications in electronics and sensor technology. Just like with a 3D-printer on the nanoscale, almost arbitrary shapes can be created.

  • Rock solid: Carbon-reinforced concrete from Augsburg

    Mortar with parallel aligned short carbon fibres. Inside picture: Schematic sketch of the nozzle technique for the alignment of carbon fibres in construction materials. © IfP/University of Augsburg

    Chemists at the University of Augsburg have discovered how to manufacture an extremely strong cement at reasonable cost through use of aligned short carbon fibres