Micro manufacture

Manufacturing at the microscale is known as micromanufacturing. This involves scaled-up, reliable, and cost-effective manufacturing of nmicroscale materials, structures, devices, and systems. Micromanufacturing also includes research, development, and integration of top-down processes and increasingly complex bottom-up or self-assembly processes.

  • Etching Microstructures with Lasers

    Structuring process for glass using direct laser ablation with ultrafast laser pulses. Fraunhofer ILT, Aachen / Volker Lannert.

    Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

  • IHP presents the fastest silicon-based transistor in the world

    The cross section shows a SiGe HBT of the latest generation, recorded by a TEM. The measurement curves are used to determine the transit frequency and the maximum oscillation frequency. © IHP 2016

    Frankfurt (Oder)/San Francisco. Scientist Dr. Bernd Heinemann of IHP – Innovations for High Performance Microelectronics will present results on silicon-germanium heterobipolar transistors (SiGe HBTs) developed in Frankfurt (Oder) on the “International Electron Devices Meeting” (IEDM) in San Francisco. His contribution titled “SiGe HBT with fT/fmax of 505 GHz/720 GHz “ presents speed parameters that set new standards for silicon transistors. “To present at IEDM is a valuable conclusion of the project ‘DOTSEVEN’, funded by the European Union. Together with Infineon and twelve other project partners from a total of six countries, the four-year project focused on developing SiGe HBTs with a maximum oscillation frequency, which is also referred to as fmax, of 0.7 THz,” says Dr. Bernd Heinemann, project manager at IHP.