New Approach in the Fight Against Viruses
- Details
- Written by Fraunhofer-Institut für Biomedizinische Technik IBMT
- Category
In the ViroSens project, researchers from the Fraunhofer-Gesellschaft in Sulzbach and Regensburg are working together with industrial partners on a novel analytical method to make the potency testing of vaccines more efficient and cost-effective. The method combines electrochemical sensor technology and biotechnology and, for the first time, enables a completely automated analysis of the infection status of test cells.
Quantum Light Sources Pave the Way for Optical Circuits: Light in the Nanoworld
- Details
- Written by Technische Universität München
- Category
An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies, from quantum sensors and transistors in smartphones through to new encryption technologies for data transmission.
New Protein-sensing Mechanism Discovered
- Details
- Written by Universität Konstanz
- Category
In a stunning discovery, molecular biologists from the University of Konstanz and ETH Zurich have been able to demonstrate that the nascent polypeptide-associated complex (NAC) senses newly synthesized proteins upon birth inside the ribosomal tunnel. New research published in Molecular Cell on 31 July 2019 conducted by researchers from the University of Konstanz’s Collaborative Research Centre 969 “Chemical and Biological Principles of Cellular Proteostasis” shows that the nascent polypeptide-associated complex (NAC) acts as a major protein identifying and, possibly, sorting device inside the cell.
Selective Antibiotics Following Nature’s Example
- Details
- Written by Universität Konstanz
- Category
Chemists from Konstanz develop selective agents to combat infectious diseases – based on the structures of natural products. With multi-resistant germs becoming more and more of a threat, we are in need of new antibiotics now more than ever. Unfortunately, antibiotics cannot distinguish between pathogens and beneficial microbes. They can destroy the delicate balance of the microbiome – resulting in permanent damages. The research team around chemist Dr Thomas Böttcher has now made a significant step towards solving these problems.
AddSteel Project: New Steel Materials for 3D Printing
- Details
- Written by Fraunhofer-Institut für Lasertechnik ILT
- Category
North Rhine-Westphalia has launched the NRW Leitmarkt project AddSteel, which is aimed at digitalizing the steel industry. Coordinated by SMS group GmbH, a plant engineering company based in Mönchengladbach, this project will develop new function-adapted steel materials for additive manufacturing. One of the project’s key areas of focus is the qualification of the developed materials for laser powder bed fusion (LPBF), a metallic 3D printing process, at the Fraunhofer Institute for Laser Technology ILT in Aachen. One of the AddSteel project team’s first successes was the development of the first case-hardening and heat-treatable steel powders designed specifically for LPBF applications.
Living Components
- Details
- Written by Albert-Ludwigs-Universität Freiburg im Breisgau
- Category
Programmable structural dynamics successful for first time in self-organizing fiber structures.
Cells assemble dynamically: their components are continuously exchanging and being replaced. This enables the structures to adapt easily to different situations, and by rearranging the components to respond to stimuli faster, to renew or to form just on demand. The microtubules, a scaffold structure made of protein fibers that can be found in the cytoplasm of the cells of algae, plants, fungi, animals and humans, are one such dynamic mesh. Because of their self-organizing structure, these fibers constantly form and degrade at the same time, thereby actively supporting the cell in complex tasks such as cell division or locomotion. The fibers require energy to form and maintain such dynamic states.
Leukemia: How Cancer Stem Cells Suppress a Danger Detector
- Details
- Written by Universität Basel
- Category
Acute myeloid leukemia stem cells elude the body’s immune cells by deactivating a danger detector. The underlying mechanisms and the potential new therapeutic approaches that this gives rise to have been detailed in the journal Nature by researchers from the University of Basel and University Hospital Basel in collaboration with colleagues in Germany.
For Bacteria, the Neighbors Co-determine Which Cell Dies First: The Physiology of Survival
- Details
- Written by Technische Universität München
- Category
Bacteria do not simply perish in hunger phases fortuitously; rather, the surrounding cells have a say as well. A research team from the Technical University of Munich (TUM) has now discovered that two factors, above all, decide over life and death: the energy required to continue living and the efficiency with which surviving cells can recycle biomass from dead cells.
Wireless Microengine Made from a Twisted Fibre
- Details
- Written by Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung
- Category
A highly efficient, micro-sized motor-cum-energy storage system has been presented by researchers from the Helmholtz-Zentrum Geesthacht (HZG) and the University of Bordeaux in the journal ‘Science’. The ‘microengine’ is made from polymeric micro-fibres, which are stiff at room temperature. When heated, the fibres become elastic and can be twisted – like a model aeroplane powered by a rubber band. Unlike the elastic band, however, when the fibres are cooled, they remain twisted until the microengine is re-heated. The energy stored when the fibres were twisted is released, the movable end begins to turn and the ‘microfiber motor’ can propel objects.
Trapped Light Particles: Dresden Physicists use Nanostructures to Free Photons for Highly Efficient White OLEDs
- Details
- Written by Technische Universität Dresden
- Category
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market - from OLED mobile phone displays to roll-out television screens, the list of applications is long.
Current OLED research focuses in particular on improving the performance of white OLEDs for lighting elements such as ceiling or car interior lighting. These components are subject to much stricter requirements in terms of stability, angular emission and power efficiency.
Fraunhofer WKI Develops Sustainable Sandwich Elements made from Wood Foam and Textile-reinforced Concrete
- Details
- Written by Fraunhofer-Gesellschaft
- Category
In a joint project with the Technische Universität Braunschweig, researchers from the Fraunhofer WKI have developed an innovative building element for the construction industry: a sandwich element with a wood-foam core and a thin cover layer of textile-reinforced concrete. It can be used, for example, as a lightweight curtain-wall element or in interior fittings. The high-performance wood foam requires no artificial binding agents and can be produced from regionally available wood residues. Through the utilization of wood foam instead of conventional foam based on petrochemicals, the proportion of particularly sustainable construction materials in buildings can be increased.
Puzzling on a Quantum Chessboard
- Details
- Written by Universität Innsbruck
- Category
Physicists at the University of Innsbruck are proposing a new model that could demonstrate the supremacy of quantum computers over classical supercomputers in solving optimization problems. In a recent paper, they demonstrate that just a few quantum particles would be sufficient to solve the mathematically difficult N-queens problem in chess even for large chess boards.
Extremely Hard yet Metallically Conductive: Bayreuth Researchers Develop Novel Material with High-tech Prospects
- Details
- Written by Universität Bayreuth
- Category
An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".
Liquid Crystal Liver
- Details
- Written by Max-Planck-Institut für molekulare Zellbiologie und Genetik
- Category
First and new realistic 3D model of the liver lobule since the year 1949: In 1949, Hans Elias pioneered the structural analysis of the mammalian liver tissue and proposed a model of the liver lobule, which is used to this day in textbooks. Almost 70 years later, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics, the MPI for the Physics of Complex Systems, & the TU Dresden took advantage of novel microscopy developments, computer-aided image analysis, & 3D tissue reconstruction and created a new realistic 3D model of liver organization. Remarkably, they discovered that the liver features an organized structure, similar to liquid crystals.
Coupled Proteins
- Details
- Written by Universität Heidelberg
- Category
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals. They focussed on the interaction between so-called G-proteins – the “mediators” of signal transmission – and the receptors known as GPCRs, which trigger signal processes.
MiLiQuant: Putting Quantum Technology into Practice
- Details
- Written by Johannes Gutenberg-Universität Mainz
- Category
Quantum technology is about to make the leap from scientific research to concrete applications. Contributing to this is the new MiLiQuant research project in which businesses and universities are cooperating to develop new applications for quantum technology. The German Federal Ministry of Education and Research (BMBF) will be supporting the project to the tune of approximately EUR 9.4 million over the next three years to early 2022.