Battery Research at Graz University of Technology: New Breakthroughs in Research on Super-batteries
- Details
- Written by Technische Universität Graz
- Category
Researchers at Graz University of Technology (TU Graz) in Austria have discovered a means of suppressing singlet oxygen formation in lithium-oxygen batteries in order to extend their useful lives. Since 2012, Stefan Freunberger of the Institute for Chemistry and Technology of Materials at TU Graz has been working on development of a new generation of batteries with enhanced performance and longer useful lives, and which are also cheaper to produce than current models. He believes that lithium-oxygen batteries have significant potential. In 2017, in the course of his work, Freunberger uncovered parallels between cell ageing in living organisms and in batteries. In both cases, highly reactive singlet oxygen is responsible for the ageing process.
Simple and Fast Method for Radiolabelling Antibodies against Breast Cancer
- Details
- Written by Universität Zürich
- Category
Radioactive antibodies that target cancer cells are used for medical diagnostics with PET imaging or for targeted radioimmunotherapy. Researchers from the University of Zurich have created a new method for radiolabelling antibodies using UV light. In less than 15 minutes, the proteins are ready-to-use for cancer imaging or therapy. Radioactive antibodies are used in nuclear medicine as imaging agents for positron emission tomography (PET) – an imaging technique that improves cancer diagnosis and monitoring of chemotherapy. Radioactive drugs can also be designed to kill tumors by delivering a radioactive payload specifically to the cancer cells. This treatment is called targeted radioimmunotherapy.
Energy-saving New LED Phosphor
- Details
- Written by Universität Innsbruck
- Category
The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.
Printing Nanoparticle Shapes for Medical Applications
- Details
- Written by Max-Planck-Institut für Polymerforschung
- Category
Personal drug delivery or nano-robotic systems could be a key concept for future medical applications. In this context, scientists around David Ng (Department of Prof. Tanja Weil) of the Max Planck Institute for Polymer Research (MPI-P) have recently developed a technology to customize the shapes of polymers and polymeric nanoparticles using DNA. In both 2D and 3D, precise patterns of structures composed of biocompatible polymer materials can be easily designed and constructed on a template.
Microscopy in the Body
- Details
- Written by Friedrich-Alexander-Universität Erlangen-Nürnberg
- Category
Biotechnologists, physicists, and medical researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed technology for microscopic imaging in living organisms. A miniaturised multi-photon microscope, which could be used in an endoscope in future, excites the body’s own molecules to illuminate and enables cells and tissue structures to be imaged without the use of synthetic contrast agents. The findings have now been published in the renowned journal ‘Advanced Science’.
New Method to Create Ultrafast 3D Images of Nanostructures
- Details
- Written by Leibniz Universität Hannover
- Category
Lensless microscopy with X-rays, or coherent diffractive imaging, is a promising approach. It allows researchers to analyse complex three-dimensional structures, which frequently exist in nature, from a dynamic perspective. Whilst two-dimensional images can already be generated quickly and in an efficient manner, creating 3D images still presents a challenge. Generally, three-dimensional images of an object are computed from hundreds of individual images. This takes a significant amount of time, as well as large amounts of data and high radiation values.
Quantum Simulation More Stable Than Expected
- Details
- Written by Universität Innsbruck
- Category
A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.
Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the solution of quantum many-body problems utilizing the concept of digital quantum simulation”, says Markus Heyl from Max Planck Institute for the Physics of Complex in Dresden, Germany. “Such simulations could have a major impact on quantum chemistry, materials science and fundamental physics.”
E-Mobility: Battery Cells Optimally Welded with Robots and Lasers for Electric Racing Cars
- Details
- Written by Fraunhofer-Institut für Lasertechnik ILT
- Category
No e-mobility without laser technology: this is one of the claims of LASER World of PHOTONICS 2019. In keeping with the theme of this year’s fair, the Fraunhofer Institute for Laser Technology ILT will be using Laser-Based Tape-Automated Bonding (LaserTAB) to demonstrate how even the most diverse battery cells and power electronics can be combined reliably using robot-assisted laser micro welding. At the Fraunhofer joint booth 431, hall A2, visitors can admire the electric racing car "eace05" of the Ecurie Aix - Formula Student Team, RWTH Aachen. An excellent example for the use of laser technology in electromobility, containing laser-welded batteries as well as laser-cut CFK-components.
Protein Complex May Help Prevent Neurodegenerative Diseases
- Details
- Written by Universität Konstanz
- Category
A protein complex within the cell has been found to play a key role in preventing the toxicity of proteins which build up amyloid plaques and can lead to neurodegenerative disorders such as Alzheimer’s and Huntington’s disease. Researchers from the Universities of Konstanz (Germany), Leeds (UK) and Stanford (USA) have discovered that the nascent polypeptide-associated complex (NAC) helps to prevent the aggregation of proteins associated with several neurodegenerative diseases.
Black Nanoparticles Slow the Growth of Tumors
- Details
- Written by Technische Universität München
- Category
The dark skin pigment melanin protects us from the sun’s damaging rays by absorbing light energy and converting it to heat. This could make it a very effective tool in tumor diagnosis and treatment, as demonstrated by a team from the Technical University of Munich (TUM) and Helmholtz Zentrum München. The scientists managed to create melanin-loaded cell membrane derived nanoparticles, which improved tumor imaging in an animal model while also slowing the growth of the tumor.
Creating Blood Vessels on Demand
- Details
- Written by Albert-Ludwigs-Universität Freiburg im Breisgau
- Category
When organs or tissues are damaged, new blood vessels must form as they play a vital role in bringing nutrients and eliminating waste. This is the only way for organs and tissues to resume their normal function. At present, the injection of growth factors or genetic material into the tissue site of interest can trigger angiogenesis, i.e. the growth of new blood vessels from pre-existing vessels. In a study published in the journal Advanced Materials, scientists from the Universities of Freiburg and Basel led by Prof. Dr. Prasad Shastri show that stable angiogenesis can be achieved by simple hydrogel injection. Due to its mechanical properties, this hydrogel resembles a blood clot.
Labeling Proteins with Ubiquitin Paves new Road to Cell Regulation Research: Tipping the Scales
- Details
- Written by Technische Universität München
- Category
Human cells have a sophisticated regulatory system at their disposal: labeling proteins with the small molecule ubiquitin. In a first, a team from the Technical University of Munich (TUM) has succeeded in marking proteins with ubiquitin in a targeted manner, in test tubes as well as in living cells. The procedure opens the door to exploring the inner workings of this vital regulatory system.
What Really Happens on the Assembly Line? High-precision Localization Promises More Transparency!
- Details
- Written by Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM
- Category
A miniature transponder helps localize tools at manual assembly stations. Fraunhofer IZM has developed a specialized transponder in the joint NaLoSysPro project to track and record safety-critical assembly tasks in industry with precise location data. The project was completed in 2018, and the innovative transponder is showcasing the capabilities of Fraunhofer IZM’s Wafer Level System Integration team to the manufacturing community.
Hollow Structures in 3D
- Details
- Written by Albert-Ludwigs-Universität Freiburg im Breisgau
- Category
Quartz glass is the preferred material for applications that require long-term use because of its high chemical and mechanical stability and excellent optical properties. The engineer Prof. Dr. Bastian E. Rapp from the Department of Microsystems Engineering (IMTEK) at the University of Freiburg and his team have developed the Glassomer process, a method that enables scientists to shape glass like plastic. In the scientific journal “Nature Communication”, they recently presented a new application: They are now able to produce three-dimensional hollow structures in quartz glass.
Designer Organelles in Cells Produce Synthetic Proteins
- Details
- Written by Johannes Gutenberg-Universität Mainz
- Category
A research team led by biophysical chemist Professor Edward Lemke has engineered a designer organelle in a living mammalian cell in a new complex biological translation process. The created membraneless organelle can build proteins from natural and synthetic amino acids carrying new functionalities. For example, scientists might incorporate fluorescent building blocks into proteins via the organelle that allow a glimpse inside the cell using imaging methods. The research work now published in Science was a collaboration of Johannes Gutenberg University Mainz (JGU), the Institute of Molecular Biology (IMB) and the European Molecular Biology Laboratory (EMBL).
Hannover Messe 2019: BAM Conducts Research on 3D-printed Concrete Components
- Details
- Written by Bundesanstalt für Materialforschung und -prüfung (BAM)
- Category
Hannover, 01/04/2019. The Bundesanstalt für Materialforschung und -prüfung (BAM) will present their research on additive manufacturing methods for complex concrete components at the Hannover Messe 2019. These methods could be used to produce tailor-made components for sewage systems quickly and economically in the future. Prototypes of various 3D printed components will be on display for those attending the trade fair.